Impact of Assimilating Satellite-derived Biomass Burning PM2.5 Emissions on CMAQ Air Quality Forecasts

Shobha Kondragunta
NOAA/NESDIS Center for Satellite Applications and Research

Acknowledgements:
X. Zhang and Q. Zhao (IMSG)
G. Pouliot, R. Mathur, T. Pierce (NOAA/OAR)
J. McQueen (NWS) and P. Lee (SAIC)
• **Objective**

 – To develop a near real time satellite-based biomass burning emissions product for assimilation into NWS air quality forecast model to improve PM2.5 and ozone forecasts

 – Other applications include retrospective air quality modeling work, EPA National Emissions Inventory, etc.
Emissions Algorithm

• Conventional
 – Based on burned area, available fuel loading, combustion efficiency, and emissions factors

• Inputs
 – MODIS Vegetation Property-based Fuel System (MVPFS) (NASA MODIS) – NESDIS product
 – Fire location and size (NOAA GOES) – NESDIS product
 – Fuel moisture category factor (NOAA AVHRR) – NESDIS product
 – Emissions factors - literature

• Outputs
 – PM2.5 emissions in tons/hour in near real time
 – CO, SO$_2$, NO$_x$, CH$_4$, etc. (as required by users)
Major Accomplishments

- Algorithm development to derive aerosol (PM2.5) and trace gas emissions during biomass burning events completed
 - Algorithm improvements, particularly for determining fire size
 - Data processed: GOES-E 2002 - present
 - Manuscript on the algorithm submitted to a peer-reviewed journal
 - Supported 2006 TEXAQS field campaign
- Worked with NOAA/OAR to conduct test air quality model simulations using satellite-derived emissions and WRF-CMAQ modeling system.
 Case study and results presented here
Evaluation of GOES Fire Size Product

![Graph showing the relationship between GOES fire size (km²) and burnt area from Landsat TM (km²). The graph includes data points for GOES_Instantaneous_subpixel_fire_size and Dinurnal_fitted GOES_burnt_area (1).]
Comparison of GOES Fire Size with EPA NEI for 2002

Cumulative GOES fire size vs burned area from NEI in 2002

Simulated Burnt Area from GOES Fire Size vs Burned Area from NEI in 2002
Verification of Satellite-based Biomass Burning PM2.5 Emissions

PM2.5 Emissions cumulated every 10 days

- From NEI
- MODIS-GOES-AVHRR
Intercomparison of CO Emissions from Different Methods
Case Study for June 21 – July 1, 2005

Top panel: Composite of fire occurrence

Bottom panel: Total PM2.5 emissions (tons)

- Time period corresponded to widespread fire activity over the U.S.
- Emissions from most fires low with few fires emitting high amounts of smoke particles
Temporal Variability in Observed Fire Occurrence

Day of Year (June 21--July 1, 2005)

- Total GOES fire counts
- Total GOES fire counts (excluding low possibility)
Assimilation Run

- AQF-aerosol version of CMAQ for the CONUS for June 2005
- Model grid was 12 km X 12 km
- Carbon-bond 4 chemistry
- 24-hour cycling period. Hourly forecasts for 48 hours beginning at 12Z
- Assumed emissions for a 24-hour time period persisted for the next 48 hours
Aerosol Optical Depth Movie Loop for June 21 – June 30, 2005

CMAQ Simulated AOD 20050621 12Z + 01HR [BASE]

CMAQ Simulated AOD 20050621 12Z + 01HR [FIRE]
AOD Difference (Fire – Base)
Surface PM2.5 Concentrations (Fire – Base)

Significance:

The new EPA standard for PM2.5 is a daily average of 35 \(\mu \text{g/m}^3 \). Without assimilation of fire emissions, forecast will be biased low for these episodic events.
Time Series of Mean AOD

Mean Values of AOD over CONUS Domain

- BASE
- FIRE

AOD

Date

25 Jun 2009
26 Jun 2009
27 Jun 2009
28 Jun 2009
29 Jun 2009
30 Jun 2009
1 Jul 2009
Summary

• Despite intense fire activity in parts of the U.S., the episode we chose to do the simulation was dominated by a significant sulfate event. However, this case study demonstrated the applicability of using satellite-derived biomass burning emissions in a forecast model.
FY07 Activities

• NOAA/OAR to conduct comparisons of surface PM2.5 concentrations with EPA AIRNOW observations
• STAR to conduct comparisons of column AOD with AERONET observations
• Conduct assimilation runs for a different time period where fires are more dominating than the urban haze/sulfate event
• Experiment with different schemes for persistence of fires during the simulation time period
• Assess the impact of assimilation on predicted PM2.5 and AOD fields for these various runs