Modern technological systems like GPS and Galileo, HF communications, and radar ranging are affected by geomagnetic storms and can become unreliable during large events. Geomagnetic storms are caused by large increases, often associated with changes in the spatial distribution, of the high-latitude energy deposition from the magnetosphere. The changes in energy input have global consequences with undesirable effects on technological systems and they cannot be adequately modeled at the present time. For operational purposes these changes can only be specified and perhaps modeled using data assimilation schemes.
OUTLINE

• Introduction
• The System
• The Need for Data Assimilation
• Example of Data Assimilation
• Status and Challenges
Why modeling the space environment?
Negative Ionospheric Storm Tracks Region of Low O/N_2

Ionosonde
24 hr data

F_2 follows O/N_2 inferred from DE-1 FUV image

Geospace Mission Definition Team Report
TEC above the CHAMP satellite altitude of 400 km on October 30, 2003

1TECU = 16 cm of delay at L1

Mannucci, private communication, 2005
SATCOM MESSAGE ERRORS

-064. THE QUICK BROWN FOX JUMPS OVER THE LAZY DOGS BACK 01234567<9"TI
-065. (VHE UICUcK vROWNSGOX JUMPS OVER!McZY(f-d,z.r.g?_f_)jSsSL 33
-066. %E QUICK$BROWN(FOX JUM'S OVER THE0L—Z3 YO?GS ,—CK 0123456789
-067. (THE QUcK BROWN GOY"JUMPS V'Z TM%e.O Â0x"??c c"??SsQJ.$:5$-
-068. $U ?S?lC0 S"N ... MUM"U! VGS* THE LAZY DOGS BACK 01=3456789 TIMES
-069. THE QUICK BROWN FOX JUMPS OVER THE LAZY DOGS BACK 0123456789 TIM

S. Basu, private communication
Geomagnetic Storm of 31 March 2001

Comparison of estimated planetary K-index and formal error (i.e. RMS scatter) in GPS zenith tropospheric delay estimates. ZTD formal error estimates derived from data acquired at NOAA/FSL GPS-Met sites at Central, AK; College, AK; Glennallen, AK; Seattle, WA; and Penobscot, ME. The Kp index is derived at the U.S. Air Force Space Forecast Center using data from ground-based magnetometers at Meenook, Canada; Sitka, AK; Glenlea, Canada; Saint Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; and Fresno, CA.

Tropospheric wet delay =7.5 cm

Seth Gutman, FSL
How can one do a better modeling job?
Solar EUV Heating

We use a proxy (F10.7) for the solar flux.

F10.7 correlates well with the solar flux over long time scales but not so well over short time scales.

The use of a proxy combined with uncertainties in heating efficiencies combine to produce uncertainties of at least 50% in the thermosphere heating.

Chemical heat transport complicates the picture even more.

Important for global dynamics and electrodynamics
Ionospheric Electric Potential 06/18/95 6.7 UT
IMF B_x = -1.9 nT B_y = -7.9 nT SW Vel = 350.0 km/sec

Weimer pattern
January 9-10, 1997

Northward E: IS radar at Sondrestrom, Greenland (66.99N, 50.95W)

T. Matsuo Private Communication, 2004
Particles and Fields

E-field patterns are statistical and consequently smooth. Conductivity calculations are based on statistical precipitation patterns that are extrapolated from one orbit insitu measurements.

=> Joule heating calculations based on statistical patterns have large uncertainties:
 50% globally
 factor of ten locally

Important for global circulation, neutral composition, and electrodynamical processes.
Figure 9. Altitude profile for climatologically mean temperature. Variability (dashed line) is determined as standard deviation from the climatological mean.

Goncharenko and Salah, JGR, 1998
Tides from below

Only propagating tides included in most models (active research)

No planetary waves included yet (active research)

Amplitudes and phases are uncertain by at least 50%

Very important for the D- and E-regions (80-150 km)

Important for the F-region (300-500 km) variability
Work on resolving these uncertainties in the energy inputs and sinks is made more difficult by the large variability present in the system.
Large Variability

Fejer and Scherliess, 2001
QuickTime™ and a Cinepak decompressor are needed to see this picture.
A Modeling Problem

- Variability in high-latitude convection and particle precipitation produce large variability in Joule heating.

- Joule Heating changes the global neutral temperature structure, neutral circulation, and neutral chemical composition.

- Neutral changes affect production, loss and transport of ionization and have dramatic effects on global electron density and TEC structures.

- Global Joule heating cannot be satisfactory modeled at this time because both the convection E-field and the particle precipitation patterns used in the models are statistical.

 => We can model generic storms but not specific ones

 One possible solution is data assimilation.
Data Assimilation

Combine model and data based on their statistical errors

Challenges

Find the best model representation for state evolution in time

Obtain accurate statistical error estimations for model and data

Availability of quality data
- latency
- spatial coverage
- statistical errors
Ensemble type Kalman Filter

Codrescu et al., Space Weather, Nov. 2004
The classic Kalman filter equations can be written as:

\[x^F(t + 1) = \Phi(t + 1; t)x(t) + u(t) \quad (1) \]

\[P^F(t + 1) = \Phi(t + 1; t)P(t)\Phi^T(t + 1; t) + Q(t) \quad (2) \]

\[y(t + 1) = M(t)x^F(t + 1) + v(t) \quad (3) \]

\[K(t + 1) = P^F(t + 1)M^T(t)[M(t)P^F(t + 1)M^T(t) + R(t)]^{-1} \quad (4) \]

\[x(t + 1) = x^F(t + 1) + K(t + 1)[y(t + 1) - M(t)x^F(t + 1)] \quad (5) \]

\[P(t + 1) = (I - K(t + 1)M(t))P^F(t + 1) \quad (6) \]

where,
- \(x(t) \) is the best estimate of the state vector (of length \(n \)) at time \(t \),
- \(x^F(t + 1) \) is the forecast value of the state vector at \(t + 1 \), before new data are assimilated,
- \(\Phi(t + 1; t) \) is the \(n \) by \(n \) transition matrix describing the evolution of the system from time \(t \) to time \(t + 1 \),
- \(u(t) \) is a vector of length \(n \) realization of the process noise, assumed gaussian random with zero mean,
- \(P(t) \) is the \(n \) by \(n \) covariance matrix at time \(t \),
- \(P^F(t + 1) \) is the forecast value of the covariance matrix at time \(t + 1 \), before data is assimilated,
- \(Q(t) \) is the diagonal \(n \) by \(n \) covariance matrix of the process noise, \(E(\dot{u}\dot{u}^T) \),
- \(y(t + 1) \) is the measurement vector (of length \(m \)) at time \(t + 1 \),
- \(M(t) \) is the \(m \) by \(n \) measurement matrix, relating the measured values to the state vector \(x^F(t + 1) \),
- \(v(t) \) is a vector realization (of length \(m \)) of the measurement noise, assumed gaussian random with zero mean,
- \(K(t + 1) \) is the \(n \) by \(m \) Kalman gain matrix, and
- \(R(t) \) is the \(m \) by \(m \) observation error covariance matrix, i.e. \(E(\dot{v}\dot{v}^T) \).
Ensemble type Kalman Filter

Codrescu et al., Space Weather, Nov. 2004
Global height-integrated O/N$_2$ ratio
Global O/N2 ratio difference

(Codrescu et al. Space Weather, Nov. 2004)
Inferred vs true forcing for April 17, 2001 storm

(Codrescu et al. Space Weather, Nov. 2004)
Ensemble type Kalman Filter
Data Assimilation and the future

Ensemble Kalman filters offer the best hope for data assimilation for large strongly forced dynamical systems.

One can do a "good" modeling job without knowing the forcing. Here it was done based on assimilation in only one field (neutral chemical composition).

One could do assimilation in multiple fields and combine the results for much more accurate forcing patterns.

One could derive forcing patterns based on EOFs. Successive orders of EOFs can be determined from different assimilated fields using better data and physical understanding. At this time we use the equivalent of only two or three EOFs.

The accuracy of the forcing patterns can increase with the amount of available data, physical understanding, and the sophistication of the schemes. This will lead to better specification and forecast of the space environment.
Near Future Challenges

Operational Global TEC product (USTEC and GAIMs)
Run GCMs in semi-operational environment + data assimilation
Specify variability and its sources from reanalysis fields
Coupling with the lower atmosphere in one seamless model (IDEA)
Scintillation modeling and prediction nested grid models + data assimilation
TEC response to storms
SED produced by SAPS
UV and EUV specification and effects
Importance of Te in NmF2 and TEC flare response
High-latitude forcing specification now from ACE
 Solar wind structure influence on high-latitude forcing
 Solar wind-magnetosphere-ionosphere coupling + data assimilation
Proposed Data Assimilation Definition
(For Space Sciences)

Data assimilation is a method in which observations of the current (and possibly, past) state of a system are combined with the results from a mathematical simulation model to produce an analysis, which is considered as 'the best' estimate of the current state of the system.