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Outline

* What is information content?
— Retrieval Theory 101
— Overview of verticality

* Uses of Averaging Kernels
— Assessment of retrieval function spacing
— Retrieval Resolution
— Statistics using Averaging Kernels

 Discussion of results
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What is information content?

Number of independent
degrees of freedom
For AIRS RTA we require:

— 100 T(p), g(p), O3(p), CO(p),
CH4(p), CO2(p), Tsurf,
emissivity, etc.

— So that the radiance computed

is accurate to ~ noise level of
AIRS (0.2K)

We cannot retrieve this many
independent pieces of
information.

Q: How do we know how
many quantities we have the
right to solve for? How do we
represent these quantities
such that they are as
independent as possible?

A: Averaging Kernels
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Retrieval Theory 101

* |In simple terms:

— Estimation of atmospheric parameters (e.g.
temperature profile, water vapor amount, etc.) from
remotely sensed measurements.
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Retrieval Theory 101

 |n mathematical terms:

— The simple treatment of the problem starts from
the unconstrained solution to a linear problem:

Linear Taylor OR OR
expansion of our R, = Rr? +— (X - XE)  SaL=oo
measurement \—?" OX L axL ‘
_ o _ Derivatives of our
We can write this in matrix form: measurement wrt
parameters being
solved for.

AR, =S, AX,

AX L — [S-Il_-,nsn,L]_ls-Lr,nARn
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Retrieval Theory 101

* |n mathematical terms:
— The simple treatment of the problem starts from the
unconstrained least squares solution to a linear

problem:
AX L — [SI,nSn,L]_1 S-II_-nARn

However, due to measurement noise and the fact that
iIn most cases the problem is underdetermined (limited

number of independent pieces of info.), we are
required to stabilize the inverse of the covariance of

our measurement:

'S! AR,

‘ in the details

AXL — [S-II_-,nSn,L +
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Averaging Kernels 101

Regularized solution to the linear problem:
— [S-II_-,nSn,L + H L,L]_ls-ll_-,nARn

Where as before we define:

OR
n(x XL) 1 SnLE

AR =
X, ST oX,

Combining the two equations above yields:

X _XO +[SLn n,L' +HL,L']_1S-II__,nSn,L'(XL'_
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Averaging Kernels 101

Combining the two equations above yields:

~

XL — XE' +[S-II_-,nSn,L' +H L,L']_ls-ll_-,nsn,L'(XL' — XE')

We can write this more compactly as:
= ch_)' +AL,L'(XL' - XE');

Averaging
Kernel

asH, . >0, A . =1 ., >ZL — X

asH_ . —w, A . >0 ., X —X]

The magnitude of H . restricts the solution to “stick” to X ° or
move to X,
The magnitude of A_. relates how much of X %is in our solution. ->
fraction of the radiances we believed
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What is verticality? Replay the
theory in words

« Averaging kernels are a linear representation of the
vertical weighting of retrievals.

— Related to the amount of information determined from the
radiances and how much is due to the first guess [Rodgers,
19706].

» To some degree avoids aliasing comparisons of in situ
measurements vs. retrievals due to incorrect first guesses.

« Enables assessment of where vertically we have information.

— Related to the vertical resolution of retrievals [Backus and
Gilbert, 1969; Rodgers, 1976; Purser and Huang, 1993]

— Required by modelers to properly use AIRS trace gas products.
— Enables assessment of retrieval skill on a case by case basis.

* In the IDEAL case (no damping): A =1 : the identity
matrix
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What is verticality?

For the AIRS science team algorithm:

« Trapezoidal functions and damping introduce
correlations (off-diagonal terms).

— Damping in general causes the vertical weighting to
fall short of the ideal case (i.e. diagonal terms of
A(k,k) < 1)

— The sum along any row (or column) can be though of
as the fraction of information determined from the
radiances.

* Only as good as our internal error estimates as damping is
determined from them.

« Warning : Sum can be > 1 -- Implies that the fraction we
believe any one function in the parameter space can be
greater than 100%.
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Verticality (cont.)

For the AIRS science team algorithm:

 lteration (esp. background term)/stepwise retrieval complicate
interpretation

— Regression FG has it's own averaging kernel. If retrieval is damped to

the regression the internal averaging kernel (from phys. ret.) loses
interpretation.

— There is a cross-talk between averaging kernels that is usually not
addressed properly. The temperature retrieval believes a fraction of the
radiances so that the averaging kernel for products other than

temperature does not exactly relate to the amount of the radiances
believed.

— Non-linearity (I won’t go into this too much here) is not properly handled
by the linear analysis shown in previous slides.

* Vertical weighting is strictly defined on the retrieval grid, not the RTA
grid.
— Any estimate of resolution based on the internal averaging kernels is
limited by the resolution of our retrieval functions.

— Transformations between retrieval functions and AIRS layers exist;

however they assume that we can “upsample” derivatives without loss
of accuracy.
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Examples of Vertical Weighting Functions

 Show information content for one sonde
(RS-90 dataset):

— 18t T(p) retrieval
—q(p) retrieval
— O4(p) retrieval
— 2" T(p) retrieval
« Between 1stand 2" T(p) retrieval, O3 and

g(p) retrievals will change internal error
estimates.

— 6 Water channels added to 2" T(p) retrieval
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Brute Force Averaging Kernels

« Use small number of cases (any L2file) to assess
impact of iteration (background term) and magnitude of
damping on interpretation of vertical weighting.

How well does the theory predict the behavior of the retrieval?

Procedure:
1. Calculate spectra for the dataset

2. Calculate spectra for the dataset using perturbations on all
retrieval layers (or any layering scheme) separately.

3. Use offline retrieval system on both control and perturbed
simulated spectra.
« Calculate averaging kernel
— A = Aret/Atru = (ret(perturbed)-ret(control))/(perturbation)

4. Compare calculations of “brute force” averaging kernels to
those obtained from the retrieval methodology.

— [Each were normalized in the following.
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Pressure, hPa

Pressure, mb

UoUT = Retrieval averaging kernel

Brute Force dret/dtru for Hz0
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Resolution estimates from brute-
force averaging kernels

Vertical resolution of any retrieval is related to the width
of the kernel functions and hence averaging kernels.

— Only averages of the true atmospheric state can be obtained by
inversion

« 1stprinciple of Backus-Gilbert method (e.g. layer to level conversion
2 pt running mean)

* Due to the fact that kernel functions are NOT &-functions

We can use statistics of the brute-force averaging
kernels to estimate the resolution of the retrieval in
different regimes (e.g. f(lat, lapse rate, cloudiness,
spectral resolution, etc.))

— In the following I'll show only Polar, Midlatitude, Tropical
comparisons.
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Calculation of resolution

* Perturb the atmosphere in fine layers (much finer than
retrieval functions)

« Calculate the 18t moment of A%(z,2’):

jz’ .A*(z,2")dz’
7 Center or average
c(z) == = value of A2(z,2')

IAZ(Z, z')dz’
z2'=0

 Calculate 2"¥ moment centered moment of A%(z,z’) about
c(z):

' 2 2 ' ’
j(z ¢(2))"- A" (z,2)z Std. Deviation of A%(z,z’) about its
1(z2) = | =—— central value or first moment->
M J‘Az (z,2')dz’ resolution of the averaging kernel

2'=0
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Examples of Statistics with Vertical Weighting
Functions

« The information content of AIRS spectra is highly scene dependent
(e.g. clear vs. cloudy, tropical vs. polar, ocean vs. land, etc. ).
Therefore, the vertical resolution and accuracy of any given retrieval
is a function of scene.

* |t makes sense to use an estimate of the information content on a
case-by-case basis for comparisons of retrievals to correlative
measurements.

— Use the averaging kernel to convolve the correlative measurement such

the this profile is more comparable to what the retrieval would “see”
given that profile.

« The followings stats are for T(p) because it is the most mature AIRS
product.

— GSFC v4.2 emulation.

— The statistics shown are for the RS-90 dataset currently being used for
tuning. No clouds!

— Enable assessment of the skill of the retrieval with and without regard
for the internal estimate of the skill of the retrieval. How good are our
internal CCR error estimates? Clear cases need not worry about them.

11/03/2005 Cross-training session 27



AIRS Dedicated Radiosonde Water Statistics
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Discussion

* Averaging Kernels provide useful diagnostic
capabilities.
— Increased vertical resolution when inversions are
detected.
» Brute force averaging kernels
— Reveal whether retrieval functions are truly
optimized.

— Enable evaluation of retrieval resolution in different
atmospheric conditions.

— Enable assessment of the retrieval on a case-by-
case basis using it's own estimate of skill.
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Background

AIRS Science team
algorithm uses coarse
layer perturbations or
trapezoids to calculate
derivatives:

— Calculation of finite
difference derivatives
requires 2 calls to RTA p
derivative — time
consuming!

— We cannot independently
solve for 100 layer values
per retrieved quantity — ~80

eigenvectors can explain

most of the variance in the

spectra.
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