
ConvertingConverting
“Science” Code“Science” Code

toto
“Operational” Code“Operational” Code

Peter KeehnPeter Keehn

QSS Group Inc, Lanham, MD, USAQSS Group Inc, Lanham, MD, USA

OutlineOutline

•• Cleaning Up The Diagnostic Output FileCleaning Up The Diagnostic Output File

•• Converting F77 Code To F90 CodeConverting F77 Code To F90 Code

•• Reducing Execution TimeReducing Execution Time

Cleaning Up The Output FileCleaning Up The Output File

•• The “.txt” file contains the diagnostic output from the retrievaThe “.txt” file contains the diagnostic output from the retrieval run.l run.
•• The content of this file is controlled by the print level defineThe content of this file is controlled by the print level defined in d in

the name list.the name list.

•• Sample code showing diagnostic output:Sample code showing diagnostic output:

if(iprt.ge.5) thenif(iprt.ge.5) then

do i = 1, numCLD_retdo i = 1, numCLD_ret

print 5010, i, pcldtop_ret(i),print 5010, i, pcldtop_ret(i),

$ (cldfrc_ret(i,j),j=1,numFOV)$ (cldfrc_ret(i,j),j=1,numFOV)

enddoenddo

endifendif

Cleaning Up The Output FileCleaning Up The Output File

•• ““Ops” code does not need the “Research” diagnostic output.Ops” code does not need the “Research” diagnostic output.
•• Solution:Solution:

»» Place unique comment markers around the “Research Only” Place unique comment markers around the “Research Only”
code blocks.code blocks.

»» This allows an “Ops” version of the code to be generated that This allows an “Ops” version of the code to be generated that
will not contain these “Research Only” blocks.will not contain these “Research Only” blocks.

•• Likewise, “Research” code does not need “Ops Only” code Likewise, “Research” code does not need “Ops Only” code
blocks.blocks.
»» Place unique comment markers around the “Ops Only” code Place unique comment markers around the “Ops Only” code

blocks.blocks.

Cleaning Up The Output FileCleaning Up The Output File

»» Sample code with “Research” comment markers:Sample code with “Research” comment markers:

C START_ORA_RESEARCH_CODEC START_ORA_RESEARCH_CODE

if(iprt.ge.5) thenif(iprt.ge.5) then

do i = 1, numCLD_retdo i = 1, numCLD_ret

print 5010, i, pcldtop_ret(i),print 5010, i, pcldtop_ret(i),

$ (cldfrc_ret(i,j),j=1,numFOV)$ (cldfrc_ret(i,j),j=1,numFOV)

enddoenddo

endifendif

C END_ORA_RESEARCH_CODEC END_ORA_RESEARCH_CODE

Cleaning Up The Output FileCleaning Up The Output File

•• Let Perl do the work.Let Perl do the work.
»» code_tagger.plcode_tagger.pl

–– Places “START_ORA_RESEARCH_CODE” and Places “START_ORA_RESEARCH_CODE” and
“END_ORA_RESEARCH_CODE” tags around the “iprt” “END_ORA_RESEARCH_CODE” tags around the “iprt”
blocks.blocks.

»» code_stripper.plcode_stripper.pl
–– Read a “Tagged” file and strip out the “Ops” or “Res” Read a “Tagged” file and strip out the “Ops” or “Res”

blocks.blocks.
»» code_locator.plcode_locator.pl

–– Driver script for code_tagger and code_stripperDriver script for code_tagger and code_stripper
–– Finds all the *.F files in a directory tree and runs selected Finds all the *.F files in a directory tree and runs selected

script on each file.script on each file.

Cleaning Up The Output FileCleaning Up The Output File

> code> code

> src_jpl> src_jpl

.F.F

> src_gsfc> src_gsfc

.F.F

> src_util> src_util

.F.F

> umbc9803> umbc9803

.F.F

> tag_code> tag_code

> src_jpl> src_jpl

.F.F

> src_gsfc> src_gsfc

.F.F

> src_util> src_util

.F.F

> umbc9803> umbc9803

.F.F

Converting to F90Converting to F90

•• FortranFortran--90 has many features that may or may not be useful in 90 has many features that may or may not be useful in
the future.the future.
»» Free Form Code Free Form Code –– no more column specific restrictionsno more column specific restrictions
»» Array ProcessingArray Processing
»» Modules replace Common BlocksModules replace Common Blocks

•• Converting F77 to F90 is fairly straight forwardConverting F77 to F90 is fairly straight forward
»» Comments must start with an “!”Comments must start with an “!”
»» Continuation character is “&” and must be at the end of the Continuation character is “&” and must be at the end of the

line.line.

Converting to F90Converting to F90

•• Let Perl do the work.Let Perl do the work.
»» code_converter.plcode_converter.pl

–– Convert comment lines starting with “C” to “!”Convert comment lines starting with “C” to “!”
–– Replace all continuation characters in column 6 with “&” Replace all continuation characters in column 6 with “&”

and place another “&” at the end of the previous line.and place another “&” at the end of the previous line.
»» code_locator.plcode_locator.pl

–– Driver script for code_converter (as well as code_tagger Driver script for code_converter (as well as code_tagger
and code_stripper).and code_stripper).

Converting to F90Converting to F90

•• Changing Common Blocks to ModulesChanging Common Blocks to Modules
•• Let Perl do the workLet Perl do the work

»» make_mods.plmake_mods.pl
–– Takes a retrieval .com file and converts it to a moduleTakes a retrieval .com file and converts it to a module

»» code_usemods.plcode_usemods.pl
–– Replaces the “#include” statement with the “USE” Replaces the “#include” statement with the “USE”

statementstatement

Reducing Execution TimeReducing Execution Time

•• Using F90 Array ProcessingUsing F90 Array Processing
»» Arithmetic and logical operations work elementally on arraysArithmetic and logical operations work elementally on arrays
»» Example:Example:

C = A + B C = A + B
where A, B, and C are all arrays of the same type and sizewhere A, B, and C are all arrays of the same type and size

Reducing Execution TimeReducing Execution Time

•• F77 Sample Code F77 Sample Code

DO L=1,NLAY
KOZO=(COEF_SM(27,L,I)*OPRED(1,L)) + &

& (COEF_SM(28,L,I)*OPRED(2,L)) + &
& (COEF_SM(29,L,I)*OPRED(3,L)) + &
& (COEF_SM(30,L,I)*OPRED(4,L)) + &
& (COEF_SM(31,L,I)*OPRED(5,L))

KOZO = AMIN1(AMAX1(KOZO, 0.0), 10.0)
Kozone(L) = KOZO

enddo
Kozone(NLAY) = Kozone(NLAY)*BLMULT

•• F90 Sample Code F90 Sample Code

Kozone(1:NLAY) = SUM(COEF_SM(27:31,1:NLAY,I)*OPRED(1:5,1:NLAY),1)
Kozone(1:NLAY) = AMIN1(AMAX1(Kozone(1:NLAY), 0.0), 10.0)
Kozone(NLAY) = Kozone(NLAY)*BLMULT

Reducing Execution TimeReducing Execution Time

•• Results from test runs with F90 Array ProcessingResults from test runs with F90 Array Processing
»» Change one section of calt23.FChange one section of calt23.F

–– runtime = 19 min.runtime = 19 min.
»» Change all sections of calt23.FChange all sections of calt23.F

–– runtime = 27 min.runtime = 27 min.

•• Normal runtime is 17 min.Normal runtime is 17 min.
»» F90 Array Processing may streamline the look of the codeF90 Array Processing may streamline the look of the code
»» It does not improve the execution timeIt does not improve the execution time

Reducing Execution TimeReducing Execution Time

•• Modifications to the Planck functionModifications to the Planck function
»» Change f**3 to f*f*f in planck.F, dplanck.F, brtemp.F Change f**3 to f*f*f in planck.F, dplanck.F, brtemp.F

dbrtemp.Fdbrtemp.F
–– Runtime went from 17 min. to 16 min.Runtime went from 17 min. to 16 min.

»» PrePre--compute all the f**3 values and store for later usecompute all the f**3 values and store for later use
–– Runtime went from 17 min. to 16 min.Runtime went from 17 min. to 16 min.

Reducing Execution TimeReducing Execution Time

•• F90 Array AllocationF90 Array Allocation
»» Use the Allocatable statement to declare an array without Use the Allocatable statement to declare an array without

having to give dimensionshaving to give dimensions
»» After determining the dimensions use the Allocate() After determining the dimensions use the Allocate()

statementstatement
»» Sample Code:Sample Code:

real*4, allocatable :: radtruall(:)real*4, allocatable :: radtruall(:)

real*4, allocatable :: bttruall(:) real*4, allocatable :: bttruall(:)

real*4, allocatable :: dBdTtru(:)real*4, allocatable :: dBdTtru(:)

..

..

allocate (radtruall(500), bttruall(800), dBdTrtu(20))allocate (radtruall(500), bttruall(800), dBdTrtu(20))

Reducing Execution TimeReducing Execution Time

•• Results from test runs with F90 Array AllocationResults from test runs with F90 Array Allocation
»» One array changed to Allocate One array changed to Allocate

–– No change in run timeNo change in run time
»» Three arrays changedThree arrays changed

–– 7 second increase in runtime7 second increase in runtime
»» 5 arrays changed5 arrays changed

–– 55 second increase in runtime55 second increase in runtime
»» 11 arrays changed11 arrays changed

–– 60 second increase in runtime60 second increase in runtime

SummarySummary

•• Converting from F77 to F90 is fairly easy and straight forwardConverting from F77 to F90 is fairly easy and straight forward
»» Perl scripts do most of the workPerl scripts do most of the work
»» Some hand editing is neededSome hand editing is needed

•• Reducing Execution time needs more looking intoReducing Execution time needs more looking into
»» Difficulties in reproducing time resultsDifficulties in reproducing time results
»» Better understanding of “time” command neededBetter understanding of “time” command needed

