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[1] Spatially-distributed forest biomass components are
essential to understand carbon cycle and the impact of
biomass burning emissions on air quality. We estimated the
density of forest biomass components (foliage biomass,
branch biomass, and aboveground biomass) at a spatial
resolution of 1 km across the Contiguous United States
using foliage-based generalized allometric models and
Moderate-Resolution Imaging Spectroradiometer (MODIS)
land data. The foliage biomass for each forest type was
calculated from MODIS leaf-area indices, land cover types,
and vegetation continuous fields. The foliage-based models
were developed using available diameter-based allometric
equations and used to estimate branch biomass and
aboveground biomass. The resultant aboveground biomass
density matches well with the data from Forest Inventory
and Analysis program at both state and pixel levels.
Citation: Zhang, X., and S. Kondragunta (2006), Estimating
forest biomass in the USA using generalized allometric models
and MODIS land products, Geophys. Res. Lett., 33, 109402,
doi:10.1029/2006GL025879.

1. Introduction

[2] Biomass components in forests have been used as
important parameters in investigating forest-atmosphere
carbon exchanges and biomass burning emissions [e.g.,
Dixon et al., 1994; Ito and Penner, 2004]. To estimate tree
biomass at field plot scales (usually less than one acre), a
large number of studies have focused on the development of
species and site specific allometric models depending
on bole diameter at breast height [e.g., Paster et al., 1984;
Ter-Mikaelian and Korzukin, 1997]. The plot estimates of
national forest inventories are commonly aggregated to
represent forest biomass at national or regional scales
[Brown et al., 1999; Jenkins et al., 2001]. However, the
forest inventories only characterize the commercially
valuable wood rather than all forest biomass and need many
years to complete [Brown et al., 1999].

[3] Remote sensing provides a method to develop
spatially-distributed forest biomass from local to regional
areas. Recently, vegetation biomass parameters have been
directly associated with remotely sensed vegetation indices
using empirical regression techniques. For example, field
measurements are statistically related to Landsat TM data
[e.g., Lu, 2005] and to AVHRR Normalized Difference
Vegetation Index (NDVI) [Dong et al., 2003]. To avoid
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the difficulties inherent in linear statistical models,
nonparametric approaches have also been developed.
Specifically, forest biomass is estimated from MODIS
(Moderate Resolution Imaging Spectroradiometer)
reflectances and ancillary variables (precipitation, temper-
ature, and elevation) using a decision tree-based model
[Baccini et al., 2004] and from SPOT VEGETATION
using an artificial neural network [Fraser and Li, 2002].
[4] These statistical methods suffer from several funda-
mental limitations. (1) Generally, a model developed and
trained using data at a specified time or region is unlikely to
work well at a different time and region. (2) A large amount
of field measurements are required to build up and to test
the models for each calculation. (3) Temporal and spatial
resolutions in the training data surveyed in fields require
matching satellite observations for developing algorithms.
[5] In this study, we estimated biomass in different forest
components across the Contiguous United States (CONUS)
from MODIS land data using allometric models. Specifi-
cally, we developed the foliage-based generalized allometric
models from published species-specific equations to calcu-
late forest biomass components. The foliage biomass was
then functionally associated with vegetation leaf area index
(LAI) and specific leaf area (SLA). Finally, the foliage
biomass, branch biomass, and aboveground biomass in
forest areas were calculated from MODIS LAI, land cover
type, and tree continuous field at a spatial resolution of 1 km.

2. Methodology
2.1. Foliage-Based Generalized Allometric Models

[6] The tree allometric models are developed for
determining tree biomass by regressing the biomass of
entire trees or their components against some easily
measured variables in the fields. These models are generally
species-specific and site-specific, but they are also
generalized to estimate biomass in mixed species across
large regions [e.g., Jenkins et al., 2003; Wirth et al., 2004].
In the allometric models, the most commonly used form is
to link biomass components to the diameter at breast
height (DBH) [e.g., Paster et al., 1984; Ter-Mikaelian and
Korzukin, 1997]:

M, = o, D* (1)

Mf = OczDﬁz (2)

where M, is the oven-dry weight (kg) of the biomass
components of a tree, including branches (M) and total
aboveground biomass (M,); M, is foliage biomass (kg); D
represents DBH (cm); and o, ay, 31 and (3, are coefficients.
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[7] While the DBH currently cannot be obtained from
satellite data, canopy leaf properties are widely measured
from spectral reflectance. Therefore, we derived a foliage-
based allometric model by eliminating D in equation (1)
using equation (2).

M, = M) (3)

where y and 9 are coefficients.

[8] To determine parameters <y and 9, a set of samples are
needed. Because of the lack of original field measurements,
we simulated samples from the existing diameter-based
models in literature. From the published models at various
environments [e.g., Gholz et al., 1979; Ter-Mikaelian and
Korzukin, 1997] the biomass samples were derived for
broadleaf forests and needleleaf forests, separately. In par-
ticular, the samples were simulated from each group of
species-specific diameter-based models:

{ My = oD +¢
My = opD% + ¢ (4)
M, = oD% +¢,
where [ represents foliage; a is aboveground tree; b is
branch; e is uncertainty; D is the DBH; o and 3 are
coefficients. When randomly selecting a D value varying
within the range of original data sets and € values within the
standard errors (+SE) in the original models, we calculated a
pair of My M,, and M,. Five pairs of biomass samples,
which were assumed to represent the equation character-
istics, were randomly simulated from each group of models.
[9] Using the simulated data sets and least squares fitting,
we estimated coefficients y and ¢ in foliage-based allometric
models for broadleaf forests and needleleaf forests respec-
tively. The models were also designed separately for the
eastern and western US because climate is humid in the
eastern US while it is Mediterranean-like in the far western
Us.

2.2. Calculation of Foliage Biomass

[10] Foliage biomass density is a function of LAI and
SLA. It can be calculated using the following formula
[Heinsch et al., 2003]:

My = LAI/SLA (5)

LAI is a function of vegetation growing seasons and the
maximum value can be retrieved from MODIS data (see
details in the following sections). The SLA is defined in
mass units of carbon and is converted to dry weight (m*/kg).
We determined the SLA values for various land cover types
according to field measurements [White et al., 2002] and
global MODIS GPP (Gross Primary Productions) and NPP
(Net Primary Productions) models [Heinsch et al., 2003].

2.3. MODIS Land Products

[11] The MODIS LAI product (MODI15A2) provides
green leaf area index at a spatial resolution of 1 km globally
[Myneni et al., 2002]. We collected LAI data at an interval
of 8 days from 2002—2004 in the CONUS. To reduce the
noise in the LAI time series, these data were composed to
monthly LAI by averaging the LAI values that passed
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quality checks indicated by quality assessment flags in the
LAI product. The monthly LAI within a year was compared
to retrieve the maximum monthly LAI in order to minimize
the impacts of LAI seasonality. Finally, to reduce the
uncertainty induced by interannual climate change and other
factors, the maximum monthly LAI in 2002, 2003, and
2004 were averaged to represent the maximum LAI.

[12] MODIS vegetation continuous field (MOD44B)
algorithm produces percent tree cover, percent nontree
vegetation (shrubs, crop, and herbaceous), and percent bare
ground at a resolution of 500 m [Hansen et al., 2003]. We
collected the data set produced from MODIS data between
November 2000 and December 2001, which is the only
version currently available.

[13] We obtained MODIS land cover data (MOD12Q1) at
a 1 km resolution for 2002, 2003, and 2004 [Fried! et al.,
2002]. To minimize the uncertainty in these three data sets,
we compiled a land cover data set based on the highest
confidence assessment value in each pixel. The land cover
types were further stratified to needleleaf forests, broadleaf
forests, mixed forests, savanna, shrublands, and grasslands.

2.4. LAI Data in Forests

[14] The maximum monthly LAI was assigned to differ-
ent forest types in each pixel according to land cover type
data. The percent tree cover in the land cover types of
needleleaf forests and broadleaf forests was considered as
needleleaf trees and broadleaf trees, respectively. The
percent tree cover in other land cover types was considered
to be equally mixed by broadleaf and needleleaf trees
because it is hard to separate them.

[15] Because the maximum monthly LAI value in a pixel
is generally for a mixture of tree and nontree vegetation, we
retrieved the tree LAI in subpixels for needleleaf trees,
broadleaf trees, and mixed trees, respectively. Specifically,
we first extracted LAI values for each land cover type from
the relatively pure pixels where the related percent cover
was larger than 90%. These LAI values between 2002 and
2004 were then averaged to represent the LAI in a pure land
cover type, which was applied to calculate the LAI ratios
between each forest type and shrubs or grasses. Thus, the
ratios combining with the percentages of tree and nontree
vegetation were used to estimate the tree LAI values in
subpixels by assuming that the LAI in a pixel was a linear
mixture between tree and nontree vegetation.

[16] Using the LAI and SLA data, the foliage biomass
density was determined from equation (5). To input the
foliage biomass density in a pixel to allometric models for
the calculation of biomass components, a scaling effect was
involved since the models were derived from the measure-
ments of individual trees. To reduce the potential scaling
effect, the foliage biomass for a tree crown area was simply
estimated from biomass density with the assumption that the
mean radius of crown size is about 3 m [e.g., Brown et al.,
2000; Popescu et al., 2003].

2.5. Data for Biomass Assessment

[17] Two data sets were obtained to evaluate our biomass
estimates. Forest inventory database produced by National
Forest Inventory Analysis (FIA) program in the US
Department of Agriculture (USDA) Forest Service is avail-
able at field plot scales in the US (FIA, www.fia.fs.fed.us,
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Figure 1. Foliage-based allometric models in the eastern US. The aboveground biomass (M,) and branch biomass
(M,,) vary with foliage biomass (My) in the (a and b) needleleaf forests and (c and d) broadleaf forests, respectively.

2003). Since an FIA plot represents one acre (0.004 km?)
sample area, the plot-based data are hard to directly com-
pare with the estimates in MODIS pixels. Therefore, the
average of plot biomass in each state of the eastern US
[Chojnacky et al., 2004] was adopted.

[18] The second data set is a forest biomass map with a
spatial resolution of 30 m in the National Forests in
California. This data set was generated by intersecting
FIA-derived timber volume estimates with a forest cover
map [Franklin et al., 2000]. The timber volume data were
then converted to the biomass values using an expansion
factor coefficient [Franklin et al., 2000; Baccini et al.,
2004]. This biomass data set was aggregated to compare
with our MODIS estimates.

3. Results and Discussion

3.1. Relationships for Branch Biomass and
Aboveground Biomass on Foliage Biomass

[19] Figure 1 shows variations in branch biomass and
aboveground biomass with foliage biomass derived from
simulated data in the eastern US. The branch biomass and
aboveground biomass are significantly related to foliage
biomass (R > 0.8) although there are some outliers for
samples with large foliage biomass. This suggests that the
variance increases with foliage biomass (canopy size),
which is also common in the species-specific models
[Grote, 2002]. The results in the western US provide similar
relationships (R* > 0.95).

[20] The foliage-based allometric models show that the
coefficient & varies greatly but vy is close to 1 in both
aboveground biomass and branch biomass. This result
implies that tree biomass components tend to be linearly
related to foliage biomass. In other words, the foliage-based
models are not very sensitive to the measurement scale of
foliage biomass, especially in low density regions.

3.2. Spatial Patterns in Biomass Components

[21] Figure 2 displays spatial patterns in foliage biomass,
branch biomass, and total aboveground biomass. The
foliage biomass is higher in needleleaf forest areas such

as the Pacific Northwest and boreal forest areas. Relatively,
the values are small in broadleaf forest regions. This
difference is mainly attributed to the SLA values which
are about 4 times larger in needleaf forests than in broadleaf
forests [White et al., 2002]. The biomass density in both
branch biomass and aboveground biomass are high in the
Pacific Northwest regions and the eastern US (especially
Appalachian Mountains). In contrast, the density is very low
in the central and southwestern US where croplands and
shrublands are mainly dominated.

[22] Figure 3 presents the forest biomass density for the
states with forest cover larger than 10% of state territory.
On average, the aboveground biomass density at state scales
is generally larger than 100 tons/ha. It is larger than
170 tons/ha in Washington, Pennsylvania, and West
Virginia, while the values are smaller in Colorado and
Florida. The average biomass density across the CONUS
is about 4.9 = 1.2, 21.6 £ 4.3, and 141.1 + 28.8 tons/ha for
foliage, branch, and aboveground biomass, respectively.
The total aboveground biomass varies considerably in
different states, which is larger than 2.7 x 10° tons in
Washington and Oregon.

3.3. Assessment of Biomass Estimates

[23] Comparison of aboveground biomass density indi-
cates that estimates from MODIS data and allometric
models match the average of FIA values very well at a
state level in the eastern US (Figure 4a). The root mean
square error (RMSE) is 21 tons/ha and the coefficient of
determination (R?) is 0.58. However, the aboveground
biomass in lowa is greatly underestimated from the MODIS
data. This is likely due to the fact that trees are sparse in the
1 km pixels because the forest cover is only 0.4% in lowa
while the FIA data usually represent plots well covered by
forests.

[24] The comparison in California provides assessment at a
pixel level (Figure 4b). The result reveals that the MODIS
estimates are associated with over 61% of the variation in FIA
data with a RMSE of 46 tons/ha. Exclusion of 3% of outliers
increases R? by 0.68 and decreases RMSE by 40 tons/ha.
Similar to the estimates from the regression tree-based model
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Figure 2. Biomass (tons/ha) components derived from
MODIS land data and foliage-based generalized allometric
models. (a) Foliage biomass, (b) branch biomass, and
(c) aboveground biomass.
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Figure 3. Average biomass density (foliage, branch, and
aboveground) and percentage of forest-covered areas in
different states.
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Figure 4. Evaluation of aboveground biomass density
(tons/ha) measured from MODIS land data using FIA data.
(a) Sate level in the eastern US, (b) pixel level in the
National Forests in California.

[Baccini et al., 2004], aboveground biomass is slightly
underestimated for the areas where the biomass is larger than
250 tons/ha. This discrepancy is likely attributed to the factors
including the sparse forests containing in MODIS pixels, the
saturation of MODIS estimates, and the representations of
different years in MODIS and FIA data.

4. Conclusions

[25] The results in this study suggest that MODIS
data combined with foliage-based allometric models provide
a robust tool to estimate biomass components across
continental scales. Once the allometric models are well
established, they can be directly applied to calculate and
update biomass data easily in regional and global areas.
Moreover, this method produces not only commonly used
aboveground biomass, but also foliage biomass and branch
biomass. These components are particularly important for
biomass burning estimates.

[26] The generalized foliage-based allometric models
indicate that foliage biomass accounts for more than 80%
of variance in both branch biomass and aboveground
biomass. On average, the forest biomass density across
the CONUS is 5, 22, and 141 tons/ha for foliage, branch,
and aboveground trees, respectively. The aboveground
biomass produced in this study matches field data sets very
well with an RMSE of 21 tons/ha on state average and
40 tons/ha at pixel scales, although the time periods and the
measurement sizes in field data do not match those from
satellite data.
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