Recent and Planned Oil & Gas Exploration, Development, Production and Transportation Activity in Arctic Regions

by
Peter G. Noble,
Chief Naval Architect
ConocoPhillips

3rd Symposium on the Impacts of an Ice-Diminishing Arctic on Naval and Maritime Operations
Annapolis, MD
June 8-11, 2009
Resources in the Arctic

- Development of the Arctic is not new
- Historically the Arctic Regions of our planet have attracted human activity in relation to resource development
 - Fishing and Whaling: Greenland, Canada, Alaska, Russia
 - Coal: Svalbard
 - Lead-Zinc: Greenland Canada and Alaska
 - Nickel: Russia
 - Iron Ore: Canada
 - Oil and Gas: Russia, Alaska, Canada, Norway
Overview

• When assessing the issues associated with Arctic offshore development it is important to take a broad and holistic view. The problems cannot be stated only in technical terms. The issues also involve:
 – non-interference with traditional activities, such as whale and walrus hunting
 – logistics requirements
 – Infrastructure (or lack of it) problems
 – emergency evacuation and rescue
 – restrictions on activities which may interfere with marine mammal migration or season migratory bird populations
 – oil spill prevention and mitigation
 – radiated in water noise issues
 – ice-alert systems capabilities i.e. the ability to identify hazardous ice
 – air quality issues when dynamic positioning and/or aggressive ice management is applied
 – ice management systems capabilities i.e., the ability to actively mitigate potential loads from hazardous ice
 – and many more
Areas of Interest in the Arctic Ocean

• Primary areas of interest for oil & gas exploration and production are in the shallower continental shelf areas off northern Russia, Canada and Alaska.

• Current areas of interest are typically in water depths of less than 100m. in the Beaufort, Chukchi, Timan-Pechora Seas. Actually much of it in water-depths of less than 40m.

• A few deeper water areas have interest such as east and west Greenland and the northern Barents Sea (Snohvit & Shtokman)
Arctic Boundaries and Yet To Find, YTF, Oil & Gas
Ice coverage approximately same as 1979-2000 average coverage

For year round operations – ice is still and will remain a major concern for marine and offshore activities well into the future
Overview of ConocoPhillips High Latitude Offshore Activities
Alaska LNG Export

- Since 1969 ConocoPhillips has exported LNG from Kenai to Japan
- This is the first and only LNG Export facility in the US
- In 1995, the Kenai LNG project replaced the original Swedish built ships with two somewhat larger capacity ships, (89,880 cubic meters) built by IHI in Japan.
- The ships are steam turbine driven with and installed power of 21,000 h.p. giving a service speed of 18.5 knots
- The ships, the *Polar Eagle* and *Arctic Sun*, are unique in that they employ free-standing prismatic cargo tanks - so far the only ships in service with this arrangement.
Alaska North Slope Oil Export

Five (5) - 1 million bbl modern “Jones Act” tankers built in early 2000s to transport crude oil from TAPS terminal in Valdez to west coast refineries:

- Double-hulled
- Designed for high-latitude operations
- Highly redundant propulsion and steering systems
- Twin main engines, propellers and rudders with bow thruster
- Integrated bridge and engine controls
- State of the art navigation equipment
Canadian Beaufort Sea

- Gulf Canada Resources which was later acquired by ConocoPhillips did a significant amount of exploration drilling in the Canadian Beaufort Sea in the late 1970s and early 1980s
- Two unique drilling units were designed and built
 - the Kulluk – a circular moored ice-worthy drill barge
 - the Molikpaq – a steel gravity based structure
- In addition 4 arctic capable icebreaking supply boats were built and deployed
Varandey Oil Export Project
Varandey Project Tankers

- Three (3) icebreaking tankers
 - 70,000 tdwt capacity – 92,000 tons displacement.
 - Contracted with Samsung H.I.
 - Break 1.5m (5 ft.) of level ice continuously
 - 2 x 10MW (total ~27,000 h.p.) Tractor Azipod propulsion
 - Cost for 3 ships < $450 million
 - Construction Schedule – Contract to Delivery - 26 months
 - One ship instrumented to collect ice interaction data
Varandey Ice Operations – April 2009

Icebreaking Support Vessel – 13,400 h.p.

Icebreaker – Ice Management Vessel – 22,500 h.p.

Icebreaking Tanker preparing to connect

Ice Resistant Loading Structure
Description of Chukchi Sea Exploration Program in 2011
Chukchi Potential

Chukchi Sea Area
- MMS estimate 15 BBO and 77 TCF potential
- 5 wells drilled 1989-1991 with 2 discoveries
- 2008 - $2.7 billion industry high bids
Environmental Baseline & Other Studies

- ConocoPhillips has been and will continue to collect data to support its 2011 exploration program
- 2008
 - Site Survey at Klondike & seafloor imaging (Norseman 1)
 - Offshore environmental baseline studies (Bluefin)
 - Ice and open water studies
 - Air monitoring station in Wainwright
- 2009
 - Seabird Observations
 - Mammal Surveys
 - Physical Oceanography
 - Biological Oceanography
 - Acoustics Monitoring
 - Contaminants (not yet confirmed)
 - Coordinate with MMS COMIDA project to collect contaminants samples (sediment/biota) in a % of 2008 locations
- Ongoing work is being done with high resolution SAR satellites to characterize ice conditions
Unique Offshore Conditions

Whale Hunting – nutritional and cultural needs of local communities
Co-existence with Neighbors

- Subsistence way of life
- Sensitive environment
Bowhead Whale Tracking

6 bowhead whales in Amundsen Gulf
May-June 2009

June 1, 2009

June 8, 2009
Arctic Ice Conditions

“Traditional” Ice Charts

SAR Image

LandSat
TerraSAR-X Images – Chukchi Sea

ScanSAR mode images over proposed drilling site at ~71N – 165W
May 25, 2009 image
10/10 mostly “medium” first year ice with some “thick” first year ice and leads beginning to open north of the drilling site
Example of SAR Tracking of Ice

6/16/08

6/23/08

Chukchi Sea

This large ice floe has moved 21 km in six days (roughly 0.15 km/hr)
100 Year Wave Conditions

<table>
<thead>
<tr>
<th>Geographic Location</th>
<th>Significant Wave Height (m) or Peak Period (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bering</td>
<td></td>
</tr>
<tr>
<td>Navarin Bay</td>
<td></td>
</tr>
<tr>
<td>Norton Basin</td>
<td></td>
</tr>
<tr>
<td>St. George Basin</td>
<td></td>
</tr>
<tr>
<td>North Alutian Basin</td>
<td></td>
</tr>
<tr>
<td>Grand Banks</td>
<td></td>
</tr>
<tr>
<td>North Atlantic</td>
<td></td>
</tr>
</tbody>
</table>

Significant Wave Height (m) or Peak Period (s)

- Significant Wave Height
- Spectral Peak Period
Ice Free Seasons at Drill Site

Ice Conditions (blue = open water)

<table>
<thead>
<tr>
<th>Year</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Source: US National Ice Center archived products

Legend:
- **Ice Free**
- **Open Water**
- **1/3 to 4/10**
- **5 to 7/10**
- **8 to 9/10**
- **9+/10**
- **1 to 3/10**
- **>3/10**

Note: The chart shows the ice conditions for the years 2006-2008 at 71° N, 165° W, with ice free seasons indicated by blue areas.
Why consider a jack-up rig?

• Ideal water depth for JU drilling unit (~140 feet) and sufficient ice-free season at Devil’s Paw

• Higher up-time due to insensitivity to wave action as compared to a drillship

• State of the art drilling
 • Increased mud system capabilities
 • Dual activity, drill and make up casing to run multiple joints
 • Able to drill and evaluate well much faster

• Improved HSE Performance
 • Pipe handling
 • Engines meet latest emissions requirements
 • Less noise in water, rig elevated

• Higher Operational Efficiency
 • Efficient drilling leads to less risk due to weather or ice events
Jack-Ups in Ice Prone Waters

- Light seasonal ice East Coast since 1996
- Grand Banks Newfoundland 2005/2006 iceberg area
- 6 Wells Bering Sea/Norton Sound (1984/1985)
- Russia Pechora Sea 2004 & 2008
JU Leg Strength in Ice

• While no operations in ice are planned with the JU rig, it was deemed prudent to examine the potential strength limit for the legs of a JU unit to sustain ice loading.

• Ice model basin test have been carried out to ascertain this limit

• In addition two independent analytical studies have been completed by leading JU authorities – ABS and Keppel O&M
What are Ice Alert and Ice Management Systems?

- Mobile offshore drilling units deployed in ice-covered waters are often supported by highly capable ice management vessels, with the intended role of modifying the local ice environment, reducing ice actions on the structure, and enhancing ice clearance.

- The types of ice management systems that are employed can have a significant influence on the design approach taken for any particular offshore system.

- This depends upon expected levels of ice management reliability, for example, the ability to consistently detect potentially hazardous ice conditions and in turn, successfully manage them before they interact with the structure.

- The major components of an ice management system used for mobile facilities in ice prone regions are illustrated on the following slide.
Ice Alert & Ice Management System

ZONES:
1. Observation Zone
2. Management Zone
3. Critical Zone

ACTIONS:
- a. Detection
- b. Threat Evaluation
- c. Physical Management
- d. Secure & Prepare to Abandon

After - ISO/DIS 19906 – Arctic Offshore Structures
Ice Management Strategy

- The ice management strategy for Chukchi summer-fall sea ice conditions is illustrated in the flow diagram.
- Detection, tracking and forecasting continue throughout the time when the potentially hazardous ice features are present.
- Once a threat is perceived and the feature is within prescribed time and/or distance limits as specified in the ice management plan, the appropriate ice management resources will be deployed.
- If the threat is averted, detection, tracking and forecasting will continue until there is assurance that the feature can no longer approach the JU unit.
- Drilling operations may be suspended and ultimately, if the threat persists, the well may be secured and JU unit jacked-down onto its hull and towed clear disconnected.
Potential Ice Management Vessels

- Typical ice breakers currently available for duties in the Chukchi Sea are shown on the left.

- Baltic Sea and Russian vessels may be available for summer/fall operations in Chukchi Sea, as permitted by their normal operating seasonal duties.

- Ice management vessels will be used to continuously observe ice conditions and take action to manage hazardous ice features.
Ice breakers
Source: TransViking

AHTS
Source: TransViking

Supply Vessels
Source: Resolvemarine

Ware Vessel
Source: Universal Logistics

Oil Spill Response
Sources: APPSCI & DavidCMartin

Ice data
Source: FIMR

Ice Management Plan

Wet-tow

Dry-tow
Source: Dockwise

CHUKCHI PROJECT FLEET

Point Barrow

Wainwright
Arctic Challenges

• Resource potential–World-class opportunity

• Arctic history–Met challenges, built facilities in difficult environments

• Opportunity–Industry can deliver technology–Must foster stakeholder confidence