Incorporating Ocean Color Remote Sensing in Ecosystem Based Fisheries Management

Kimberly Hyde & Michael Fogarty

NOAA/NMFS/NEFSC
Ecosystem Based Management

- Within NOAA there is a strong focus on Integrated Ecosystem Assessments and Ecosystem-Based Approaches to Management, with an increasing emphasis on ecological forecasting.

- There is also an emphasis to monitor changes in the oceans and how climate changes impact phytoplankton species composition and the marine food web.

- In this context, there is a need for accurate, timely, consistent and fit for purpose ocean color data/products to support NOAA (NMFS, NOS, OAR) and related users with ongoing coastal, ocean and inland water applications, especially fisheries and broader living marine resource management.
Ocean color remote sensing

- Documenting, monitoring and forecasting the response of marine ecosystems to environmental variability and climate change
- Assessing biodiversity
- Biogeochemical cycling
- Connections between seasonal blooms (phenology) and recruitment
- Examining variations in functional groups/size class abundance and distribution patterns (temporally and spatially)
- Food-web structure and secondary/tertiary production
Ecosystem Production Potential

Goal: Use a **bottom-up** approach to determine fisheries production potential and exploitation for various ecosystem components.

- Benthos
- Benthivores
- Planktivores
- Piscivores

Question: How efficiently is primary production transferred to higher trophic levels?
Ecosystem Production Potential - Historical

\[
EPP = PP \cdot T^{TL-1}
\]

Where **EPP** is Ecosystem Production Potential, **T** is the ecological transfer efficiency, **TL** is the mean trophic level of the catch.

Historically, an exploitation rate of 50% was assumed to be sustainable.

(Pauly, 1995 – Fisheries Research)
Ecosystem Production Potential - Model

\[P_i = T \cdot P_j + A_i - F_i \]

Where \(P_i \) is Production at the \(i^{th} \) node,
\(T \) is the matrix of ecological transfer efficiencies,
\(A_i \) is a vector of external inputs to the \(i^{th} \) node, and
\(F_i \) is a vector of losses from the \(i^{th} \) node.
Proposed Ecosystem Limit Reference Point:

The total Exploitation Rate should not exceed the fraction of Microplankton Production in the System.
Proposed Ecosystem Limit Reference Point:

The total Exploitation Rate should not exceed the fraction of Microplankton Production in the System.

Use ocean color remote sensing to estimate the fraction of Microplankton Production.
Phytoplankton size classes

Pan et al. 2008 & 2010
Phytoplankton size classes

Pan et al. 2008 & 2010
Phytoplankton size classes
Size Fractionated Primary Production

![Graph showing the relationship between percent microplankton chlorophyll and percent microplankton production.](image)
Size Fractionated Primary Production

TOTAL

MICROPLANKTON

NANO + PICOPLANKTON

Chlorophyll a (mg m$^{-3}$)

Percent Microplankton (%)

Percent Nano+Picoplankton (%)

(NOAA FISHERIES)
Size Fractionated Primary Production

TOTAL

MICROPLANKTON

NANO + PICOPLANKTON

Primary Production (gC m$^{-2}$ d$^{-1}$)

Percent Microplankton (%)

Percent Nano+Picoplankton (%)
Size Fractionated Primary Production
Ecosystem Production Potential - Model

- Upper Trophic Levels
 - Planktivores
 - MesoZooplankton
 - MicroZooplankton
 - Nano/picoplankton
 - Nanoflagellates
 - Bacteria
 - Benthivores
 - Deposit-Feeding Benthos
 - Suspension-Feeding Benthos
 - Microplankton
The proposed ecosystem limit reference point is that the exploitation rate should not exceed the fraction of microplankton production in the system (~20-30%), which equates to ~825,000 t of harvestable production.
Summary

- Fishery removals exceeded recommended levels (~825,000 t) in the past, but are now close to estimates of sustainable extraction rates for the ecosystem as a whole.
Directed targeting of some species means that some functional groups are still at risk.
A diversified catch will be necessary to create a more balanced harvesting policy.
Summary

Changes in the phytoplankton community composition and/or rates of primary production will affect the community production and the overall fisheries yield of the system. Thus, there is an ongoing need for:

- Climatological quality (preferably hyper-spectral) ocean color remote sensing data (RRSs, PAR, CHL, IOPs, Kd) to monitor changes in the phytoplankton community.
- Improved algorithms for measuring phytoplankton functional groups/size classes on the continental shelf.
- *In situ* validation data of phytoplankton pigments, primary production, and other related parameters.