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Evolution of sediment plumes in the Chesapeake Bay 
[Zheng et al., 2015a] 
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•  Hurricane Ivan (2004) triggered a 
discharge of sediments equivalent to the 
total amount discharged over the preceding 
10 years 
 
 
 
 

•  The shift in typology occurred in an 
abrupt manner after Hurricane Ivan 

 

• The regime shift is likely associated 
with Hurricane Ivan (2004) 



• Chlorophyll transect is decoupled 
from suspended sediment transect 
 
 

• Higher algal biomass is located 
downstream of the Turbidity Max 

Another important detail: 
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Generalized Stacked-Constraints Model (GSCM) 

[Zheng et al., 2015b] 

Inequality 
Constraints 



Inequality Constraints 

#1 0.75 < aph(412)/aph(443) < 1 

#2 0.48 < aph(490)/aph(443) < 0.77 

#3 0.76 < aph(469)/aph(412) < 1.13 

#4 0.19 < aph(555)/aph(490) < 0.50 

#5      0 < ad(750)/ad(443)    < 0.3 

Advantages of GSCM 
 

• Representative spectra determined from 
hierarchical cluster analysis using field 
data. 

 

 

• The inequality constraints allows 
spectral shape of aph(λ) to vary widely  



• The model-derived 
ad, ag, and aph agree 
reasonably well with 
measurements 
 

• Small systematic 
error (e.g., MR differs 
within ±10% from 1 
@443 nm) 
 

• Small random error 
(e.g., MPD ranges 
between 11 and 17%, 
and RMSD between 
0.07 and 0.14 m-1 
@443 nm) 
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[Lee et al., 2010] 

[Lee et al., 2009] 

[Zheng et al., 2015b] 

[Wang, 2007; Wang & Shi, 2007] 

Total particulate matter NAP +  
CDOM 
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Application of GSCM to MODIS data 
[Zheng et al., in prep] 



•  Water mass A:  
o Potomac River plume  
o CDOM and NAP dominated 
o bbp(443):ad(443) = 1.8 ± 0.2 % 
o CDOM-NAP mixed plume 

 
•  Water mass B:  

o Rappahannock River plume  
o CDOM dominated 
o bbp(443):ad(443) = 1.5 ± 0.2 % 
o “Tea-colored” plume 

 
•  Water mass C:  

o York River plume  
o CDOM and NAP dominated 
o bbp(443):ad(443) = 2.2 ± 0.3 % 
o CDOM-NAP mixed plume 

 
•  Water mass D:  

o James River plume  
o NAP dominated 
o bbp(443):ad(443) = 2.5 ± 0.2 % 
o “Turbid” plume 

Fall 2002 
Optical identification of water mass 



Conclusions 

• Combining satellite-derived suspended sediments data and field-measured 
streamflow data allows us to elucidate short- and long-term trends of 
sediment distribution. 

 
• The GSCM-type approach which allows the extraction of mathematically 

dissociated absorption coefficients of phytoplankton, nonalgal particles, 
and CDOM is a promising new tool for water quality research and 
applications. 

 
Future research 
• Improve the spectral shape of satellite-derived Rrs(λ) in the blue spectral 

region 
• Identify potential links between optical properties and water quality 

parameters such as toxins, harmful algal cell counts, dissolved oxygen, 
oxygen demands, priority pollutants, and etc. 
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