ATMS Geolocation Validation and Trending

Yang Han1, Fuzhong Weng1, Xiaolei Zou2, Hu Yang2, Kris Robinson3, and Ninghai Sun1

1. NOAA Center for Satellite Applications and Research, College Park, MD
2. ESSIC, University of Maryland, College Park, MD
3. Space Dynamic Laboratory, Utah State University
• S-NPP ATMS Geolocation Accuracy Requirement
• S-NPP ATMS Geolocation Calculation Flow Chart
• S-NPP ATMS Geolocation Accuracy Validation Methods
 – Coastline Detection Method (CDM)
 – Land-sea Fraction Method (LFM)
• S-NPP ATMS Geolocation Accuracy Validation Results
• Summary
• Path Forward
ATMS Geolocation Accuracy Requirement

- **Pointing Accuracy Definition**
 - At each beam position, in both the scan (crosstrack) and the spacecraft velocity (downtrack) directions, the beam pointing accuracy is defined as the difference between the intended and actual beam electrical boresight directions.

- **Pointing Accuracy Requirement (S-NPP, AE-28100)**
 - +/-0.10 degrees for the 1.1 degrees beamwidth channels (G-band)
 - +/-0.15 degrees for the 2.2 degrees beamwidth channels (V/W-band)
 - +/-0.30 degrees for the 5.2 degrees beamwidth channels (K/Ka-band)

- **Pointing Accuracy Requirement (JPSS, AE-28300)**
 - For each position, the pre-launch static beam-pointing error shall be no greater than 0.50 degrees, 3 sigma, per axis for all channels.
ATMS Geolocation Implementation Flow Chart

Coordinate system transformation from antenna coordinate to geodetic coordinate
Coastline Detection Method (CDM)

a. Fit a cubic polynomial to brightness temperatures at four consecutive FOVs that cross a coastline
b. Find the coastline by calculating inflection point when preset conditions are satisfied
c. Obtain geolocation errors in latitude and longitude by computing the perpendicular distance between the inflection point and GSHHS database

Recommendation on scene selection,
1. High thermal contrast between land and water
2. Infrequent cloud cover
3. No unusual terrain features

Selected coasts for validation,
 a) North Africa western coast
 b) Caspian Sea coast
 c) Red Sea coast
Land-sea Fraction Method (LFM)

a. Collocate land sea mask within ATMS FOVs
b. Simulate brightness temperature with land sea mask datasets
c. Define cost functions by shifting the land sea mask in the along-track and cross-track directions
d. Detect geolocation accuracy by minimizing cost functions
Construct brightness temperature simulation model according to statistical analysis of the scene measurements

\[
T_{\text{Model}} = T_{\text{sea}} + lfrac \cdot (T_{\text{land}} - T_{\text{sea}})
\]

\(T_{\text{land}}\) and \(T_{\text{ocean}}\) is the average brightness temperature in land and ocean, respectively. \(lfrac\) is the land-sea fraction in a satellite footprint, and \(T_{\text{model}}\) is the corresponding brightness temperatures.

Minimize Chi-square function by shifting the land sea mask datasets in north-south and east-west directions to find the best matched land sea mask fractions

\[
\chi^2 = \sum_{\text{FOVs}} (T_{\text{OBS}} - T_{\text{Model}})^2
\]
Geolocation errors in latitude (ε_{lat}) and longitude (ε_{lon}) can be mapped to in-track (ε_{in}) and cross-track (ε_x) errors by the following equation, where θ is the spacecraft heading angle:

$$
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_{\text{in}}
\end{bmatrix} =
\begin{bmatrix}
\sin \theta & \cos \theta \\
\cos \theta & -\sin \theta
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{\text{lat}} \\
\varepsilon_{\text{lon}}
\end{bmatrix}
$$

Transformation from latitude and longitude to in-track and cross-track coordinate systems.
In-track and cross-track mean errors over North Africa western coast (black), Caspian Sea (blue), and Red Sea (red) before (circle) and after (cross) geolocation error correction.

(a) K-band

(b) Ka-band
ATMS Geolocation Accuracy Validation Results (CDM)

(a) **V-band**

(b) **W-band**

Cross-track mean error (Degree)

- Number of datasets

In-track mean error (Degree)

- Number of datasets
In-track and cross-track mean errors and standard deviation before and after geolocation error correction by bands.

G-band

(a) In-track mean error (Degree) versus number of datasets.

(b) Cross-track mean error (Degree) versus number of datasets.

(a) Mean error (Degree) and standard deviation (Degree) for each channel.
Cost functions for ATMS K/Ka/V/W/G-band. The minimized cost functions is at (-0.074, 0.082), (-0.001, -0.002), (0.001, 0.0510), (-0.1010, 0.0880) and (-0.0010, 0.0110)
In-track (solid circle) and cross-track (open circle) mean errors ATMS K/Ka/V/W/G-band over North Africa western coast (black), Caspian Sea (blue), and Red Sea (red)
Latitude and longitude errors are recommended to be corrected in instrument alignment by pitch, roll and yaw angle adjustments.

First transformation is from geodetic coordinate (ENU) to Earth spherical coordinate (IJK)

\[T_{\text{loc}}^{\text{IJK/ENU}} = \begin{bmatrix}
 -\sin \theta_{\text{loc}} & -\sin \varphi_{\text{loc}} \cos \theta_{\text{loc}} & \cos \varphi_{\text{loc}} \cos \theta_{\text{loc}} \\
 \cos \theta_{\text{loc}} & -\sin \varphi_{\text{loc}} \sin \theta_{\text{loc}} & \cos \varphi_{\text{loc}} \sin \theta_{\text{loc}} \\
 0 & \cos \varphi_{\text{loc}} & \sin \varphi_{\text{loc}}
\end{bmatrix} \]

Second transformation is from Earth spherical coordinate (IJK) to instrument coordinate (XYZ)

\[T_{\text{sat}}^{\text{XYZ/IJK}} = (T_{\text{IJK/XYZ}}^{\text{sat}})^T = \begin{bmatrix}
 \vec{x} & \vec{y} & \vec{z}
\end{bmatrix}^T \]

The beam vector in instrument coordinate (XYZ) can be obtained from observed beam vectors in geodetic coordinate (ENU) by,

\[\vec{b}_{\text{XYZ}} = T_{\text{sat}}^{\text{XYZ/IJK}} T_{\text{loc}}^{\text{IJK/ENU}} \vec{b}_{\text{ENU}} \]

<table>
<thead>
<tr>
<th></th>
<th>K</th>
<th>Ka</th>
<th>V</th>
<th>W</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll</td>
<td>-0.0525</td>
<td>0.1645</td>
<td>-0.1967</td>
<td>-0.0103</td>
<td>0.0186</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.3538</td>
<td>0.4388</td>
<td>0.1992</td>
<td>-0.0219</td>
<td>-0.0132</td>
</tr>
<tr>
<td>Yaw</td>
<td>-0.0938</td>
<td>-0.0594</td>
<td>-0.0524</td>
<td>0.0682</td>
<td>-0.0954</td>
</tr>
</tbody>
</table>
Summary

• S-NPP ATMS in-track and cross-track geolocation errors meet the requirement

• According to this study, ATMS in-track and cross-track geolocation error is,
 – (-0.0466, -0.0046) for K-band
 – (-0.0587, 0.0257) for Ka-band
 – (-0.0251, -0.0232) for V-band
 – (0.0043, 0.0032) for W-band
 – (0.0023, 0.0075) for G-band

• A rotation correction matrix is derived based on the analysis to improve the geolocation accuracy
Path Forward

- STAR ICVS will add S-NPP ATMS geolocation accuracy long term trending parameters
- Attempt to implement geolocation correction in OPS
- Validate JPSS-1 ATMS mounting matrix