Getting to Precipitation Involves Multiple Calibrations

PMW Channels

L1B Tb
- radiometric cal.
- intercalibration; zenith angle and parallax correction

L1C Tb
- intersatellite Tb cal.
- algorithm intersatellite precip cal.

L2 Precip
- intersatellite precip cal.

Other L2 PMW Precip...

L3 Merged Precip
- multi-satellite/gauge precip cal.

L3 IR Precip
- PMW precip/IR Tb cal.

L3 Merged IR (4 km; GridSat)
- radiometric cal.

GEO-IR (multi-spectral in future)
- radiometric cal.

Perfect is a good place to start – Prego
Global Precipitation Climatology Project (GCP) Satellite-Gauge adheres to Climate Data Record (CDR) standards

- homogeneity at the expense of instantaneous skill
- 06/18 LST PMW calibrates GEO-IR (40° N-S, other approaches at higher latitudes)

Integrated Multi-satellitE Retrievals for GPM (IMERG) is a High Resolution Precipitation Product (HRPP)

- instantaneous skill
- use “all” precip-relevant satellites
- potential for drift in the statistics as the constellation changes

Ascending passes (F08 descending); satellites depicted above graph precess throughout the day.
Image by Eric Nelkin (SSAI), 2 March 2016, NASA/Goddard Space Flight Center, Greenbelt, MD.
Example: GPCP V2.2
Climatology

2.5° x2.5° grid is smoothed in this representation

To zero order, anti-correlations in land and ocean yield a nearly flat global time series
• bias shifts within and between satellites are a concern
• sag at the end is now explained by shift from SSMI to SSMIS and associated sensor/algorithm issues
Example: Last Week of V3 IMERG Near-Real-Time

0.1° x 0.1°, half-hourly
- precip phase is diagnostic
- puts a premium on overpass-to-overpass consistency
How the GSICS Calibration Strategy Supports Satellite Precipitation Products (1/2)

Tie satellite measurements to absolute references and standards
- we absolutely depend on the experts to do this!

Inter-calibrate operational satellite instruments
- we absolutely depend on the experts to do this!
- PMM (TRMM+GPM) funded the Cross-Calibration Team (XCal) to do this across all PMW sensors to (help) ensure consistency
 - this extends to sensors in both the TRMM and GPM eras
- the current state of algorithms only requires Tb within, say, 1K in most channels, but
 - the algorithm developers are ratcheting down the tolerances
 - the new emphasis on light precip and snowfall requires study, and will likely result in tighter tolerances for some channels
- information on the occurrence of sun glint, solar intrusion, RFI, etc. is also key
Monitor instrument performance

- I need to be better plugged in to this activity
- within GPM the first inkling of the recent DMSP F17 37V problem came when the near-real-time IMERG animations started showing bad swaths of data
- we don’t currently have automated quality controls on inputs or outputs

Recalibrate archived data

- this is a “modern best practice”
- it is a non-trivial exercise that requires resources from the responsible agency
- note: changing standards of data archive practices (format, metadata, documentation) can be implemented at the same time
- what is the tie-in between the XCal Level 1C results and the individual agencies’ state of processing for their own Level 1B?
- after Xcal’s TRMM/GPM-era work, we need to go “all the way back”, to DMSP F08 SSMI, and even SMMR
 - significant challenges with SMMR, but
 - success would provide a “live” precipitation calibrator for IR data back to the start of the operational LEO/GEO era (~1979)
Is there a consensus on calibrating the early NOAA LEO-IR sensors?

- At about the time of the last GPCP retrospective processing there were alternative data sets and no clear guidance.

Is there a current or developing GSICS standard for correcting GEO-IR data?

- Intersatellite calibration
- Zenith angle correction
- Parallax correction
- It would be helpful to have a considered review of current practices.
 - CPC 4-km Merged Global IR
 - GridSat

There is a long-term need for precip from legacy and current GEO data.

- The long record only provides thermal IR, water vapor, visible.
 - But used together, these beat IR-only algorithms.
- As we continue to upgrade all other aspects of the data record, a consistent record of these legacy channels is becoming important.
The precipitation community depends on the satellite specialist community to carry out the calibration strategy stated by GSICS

• consistency between satellites is becoming more important
 • other sources of error are being reduced
 • the lengthening record across increasingly more satellites can be used for climate studies if it is “sufficiently” homogeneous

Precipitation studies use satellite data beyond PMW

• GEO-IR continues to be used
• GEO multi-spectral is poised to be used
• further in the future, will radars and lightning detectors need attention as well?

george.j.huffman@nasa.gov