Assessing Uncertainty Of Ocean Water
Bidirectional Reflectance Model
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/ /Why is f/Q important?
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C. D. Mobley, Ocean Optics Web Book, Atmospheric Correction
for satellite Ocean Color Radiometry,

“It would be desirable to have an AOP that completely removes
the effects of solar zenith angle, viewing direction, atmospheric
conditions, and sea state, while retaining a strong dependence
on the water IOPs. It would then be possible to compare this
AQP for measurements made at different times and/or
locations, and thereby extract information about the differences
in the water columns for the different measurements.”
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~~ Unresolved BRDF Issu

The dependence of f/Q on the IOPs, and viewing geometry
was studied in terms of a bio-optical model

However, the IOP-[Chl] parameterizations are not unique
due to the inherent variability of the correlations.

Mobley et al. (2004) have pointed out that “within Case 1
waters, there is a factor-of-two (and sometimes much
greater) variability in the values of optical properties for a
given chlorophyll value”

It is then necessary and important to understand how the f
/Q factors respond to different choices of bio-optical models
and the natural variability of the IOPs
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How do we address this?

[OP=® x IOP([CHL], A) 0,6,¢

Radiative Transfer Model
|

AOP([CHL], A,0,, 6, )




LT :e4f**f)/‘ﬂ0| LUO B:T (MAUO) e*’l'* /‘”O‘E

Pm (,Ll,,UO) e—r/\,uo\E
47 ° m

St =2 | P (r,4t)d

=

ey B (tty) o
LT _ (z—7 ) | 1”0‘ { (/u)u())e T /\yo\E
T

Lz (T,ﬂ > 0) = I exp{—('[’ — T) /ﬂ} Sj (T’, ‘u)dz'/p Zhai, P, Y. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, D. B.

Josset, “A vector radiative transfer model for coupled atmosphere
T and ocean systems with a rough interface,” ] Quant Spectrosc
Radiat Transf, 111, 1025-1040 (2010).
m — m hai, P, Y. Hy, C. R. Trepte, and P. L. Lucker, "A vector radiative
L (,u<0)= | exp{A(7—10)/i}S’ (7 d’r/M Zhalhiy i, pte, :
b ( H ) p{ ( ) ‘u} b ( ? ﬂ) transfer model for coupled atmosphere and ocean systems based
0 on successive order of scattering method," Opt. Express 17, 2057-

2079 (2009).



> /;jjf; /w

- Key Features of the SOS VRT model

Full four Stokes parameters solution.

Full physics coupling of atmosphere and ocean.
Elastic and Inelastic scattering.

Handle both coastal and open oceans.

Analytical single scattering correction (Nakajima
and Tanaka 1988) for both atmosphere and ocean.

Advanced angular interpolation scheme using
(Schulz and Stamnes, 2000)

Flexible detector position.



* Wavelength, A (seven values): 412.5, 442.5, 490, 510,
560, 620, and 660 nmy;

* Chlorophyll a concentration (six values): 0.03, 0.1, 0.3,
1.0, 3.0, and 10.0 mg m~3;

* CDOM absorption factor, @ (five values): 0.1, 0.5, 1.0,
2.0, and 10.:

* Scattering coefficient factor, ®, (three values): 0.5, 1.0,
and 2.0:

* Ocean water polarization at 90°, p(90°) (five values): 0.5,
0.6, 0.66, 0.7, and 0.8;

* Solar zenith angle, 8, (six values): 0°, 15°, 30°, 45°, 60°,
and 75%

* Viewing azimuth angle, ¢ (13 values): 0°-180° with in-
crement of 15%

* Viewing zenith angle, 8 (17 wvalues): 1.078°, 3.411°,
6.289° 9.278° 12.300° 15.330° 18.370° 21.410°, 24.450°,
27.500° 30.540°, 33.590° 36.640°, 39.690° 42.730°,
45.780°, and 48.830°.
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~— Why the differences?

b, (4 [Chl]) =b,(660, [Chi]) (660)]’

®,0.347[Chl]* 766y = 0.5(log,,[Chl] - 0.3)‘

b,(550,[Chl]) =0.35 66¢[Chl]'3-766 If [Chl]=1.0 mg/m?

. In Morel
b,(550, [Chl]) = 0.416[Chl]’766 " ¥ore

2002.




here is 0.416 from?

be taken into consideration. Indeed, (9) can be replaced by a
new empirical relationship, derived from a recent and much
larger data set, and specifically valid for the oceanic upper

layer [Loisel and Morel, 1998); this revised expression, estab-
lished for A = 660 nm, is

bﬁﬁf:t]l([Ch]-]} = 0.34?[(:111]“.?{!{!
transformed into
b,ss0([ Chl]) = 0.416[ Chl]" " (12)

at 550 nm if a A~ ' spectral dependency is adopted for this
scattering coefficient.

From Morel and Maritorena, JGR, 2002
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Take Home Messages

A systematic evaluation of the MAG2002 BRDF LUT is
performed.

General consistency is observed.

Difference remains due to the different radiative
transfer modeling details, singles scattering phase
functions, [OPs.

Uncertainty of BRDF simulation are assessed by
comparing new simulations and those of MAG2002.

The BRDF study needs to be continued considering
the newest bio-optical model for Case 1 and coastal
waters.
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