GPM Mission Concept

- Coordinated precipitation measurements by a constellation of microwave sensors to achieve global sampling and coverage through partnerships.

 The GPM Core is specifically designed to:
 - Set a new reference standard for precipitation measurements from space
 - Provide a transfer standard to unify and improve precipitation estimates from passive microwave radiometers
Baseline GPM Constellation of Satellites

GPM Core Observatory (NASA/JAXA, 2014)

NPP (NASA/NOAA)

MetOp B/C (EUMETSAT)

JPSS-1 (NASA/NOAA)

DMSP F19/F20 (DOD)

Megha-Tropiques (CNES/ISRO)

NOAA 19 (NOAA)

GCOM-W1 (JAXA, 2012)

Next-generation global precipitation products for research & applications

G. Skofronick Jackson, 2nd NOAA User Workshop on the GPM Mission, Nov 29, 2011, College Park, MD
Core Observatory Measurement Capabilities

Dual-Frequency (Ku-Ka band) Precipitation Radar (DPR):
- Increased sensitivity (~12 dBZ) for light rain and snow detection relative to TRMM
- Better measurement accuracy with differential attenuation correction
- Detailed microphysical information (DSD mean mass diameter & particle no. density) & identification of liquid, ice, and mixed-phase regions

Multi-Channel (10-183 GHz) GPM Microwave Imager (GMI):
- Higher spatial resolution (IFOV: 6-26 km)
- Improved light rain & snow detection
- Improved signals of solid precipitation over land (especially over snow-covered surfaces)
- 4-point calibration to serve as a radiometric reference for constellation radiometers

Combined Radar-Radiometer Retrieval
- DPR & GMI together provide greater constraints on possible solutions to improve retrieval accuracy
- Observation-based a-priori cloud database for constellation radiometer retrievals
GPM Next Generation Precipitation Products

1) Intercalibrate constellation *brightness temperature* data with sensor differences reconciled using the non-Sun-synchronous Core satellite as a transfer standard.

2) Unify *precipitation* retrievals using a common hydrometeor database constructed from combined DPR+GMI measurements

Radiometer precipitation retrievals use a Bayesian database

TRMM’s database from cloud models
Simulated Tₜ, Z, & RR

GPM’s database from DPR+GMI obs.
Observed Tₜ, Z, & combined retrievals

TRMM: Cloud resolving model simulations to database T_b and Z via forward radiative transfer model calculations.

GPM: GPM Core observations provide database T_b and RR, this transfer standard allows for unified precipitation retrievals.

G. Skofronick Jackson, 2nd NOAA User Workshop on the GPM Mission, Nov 29, 2011, College Park, MD
GPM Mission Status

- GPM is in (Phase C) implementation at NASA and JAXA
 - Two agencies have signed a Memorandum Of Understanding on GPM cooperation
 - Launch readiness date: Feb 2014
 - NASA Precipitation Processing System (PPS) completed Build 3 Review and is currently producing prototype intercalibrated L1C products for TMI, SSMI, AMSR-E, SSMIS, & WindSat and L3 NRT merged global precipitation products using TMI, SSMI, AMSR-E, AMSU, and MetOp data.

- NASA and CNES, and NASA and ISRO have bi-lateral Implementing Agreements to formalize the participation of Megha-Tropiques in GPM

- The NASA-NOAA Inter-agency Agreement on GPM cooperation is in review

- NASA and EUMETSAT are in discussion to develop a formal agreement on GPM

- NASA and AEB have signed a Cooperative Agreement on GPM Scientific Collaboration in Oct. 2011.

- NASA PMM Science Team is on track to deliver GPM L2 and L3 baseline algorithm codes to PPS and MOS at end of Nov. 2011.

- NASA is conducting a series of GPM ground validation campaigns in cooperation with domestic and international partners.
Ground Validation: MC3E (April 22 – June 6, 2011)

- 70 ER-2 and 45 Citation flight hours including 8 ER-2/Citation coordinated missions
- 3 ER-2 emissivity missions
- Continuous sampling by 5-7 ground radars
- Citation microphysics and cloud missions
- Launch of ~1200 radiosondes
MC3E Algorithm-GV Traceability Matrix

Improving physical parameters in retrieval algorithms using MC3E campaign measurements

Campaign Data

+ **Microphysics/EM Modelers**

+ **Algorithm Developers**

=> Algorithm Refinements

<table>
<thead>
<tr>
<th>Algorithm issues or assumptions</th>
<th>Applicable Measured and/or Diagnosed Parameters</th>
<th>Z</th>
<th>Z</th>
<th>P</th>
<th>D</th>
<th>Z</th>
<th>I</th>
<th>C</th>
<th>F</th>
<th>C</th>
<th>C</th>
<th>T</th>
<th>T</th>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path integrated attenuation approach(es)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hydrometer Identification (3D)</td>
<td></td>
</tr>
<tr>
<td>Hydrometer melting model</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Melting layer identification</td>
<td></td>
</tr>
<tr>
<td>Convective/Stratiform partitioning</td>
<td></td>
</tr>
<tr>
<td>Dual-Frequency rain rate retrieval</td>
<td></td>
</tr>
<tr>
<td>Near surface rain estimate/rain profile</td>
<td></td>
</tr>
<tr>
<td>Sub-pixel DSD and rain variability (correlation, errors, beam filling)</td>
<td></td>
</tr>
<tr>
<td>DSD profile and "z" adjustments</td>
<td></td>
</tr>
<tr>
<td>Column/Land surface emission</td>
<td></td>
</tr>
<tr>
<td>Rain/no rain discrimination</td>
<td></td>
</tr>
<tr>
<td>Ice particle vs. volume extinction</td>
<td></td>
</tr>
<tr>
<td>Cloud water profiles</td>
<td></td>
</tr>
<tr>
<td>Ice process, scattering, and rainfall</td>
<td></td>
</tr>
<tr>
<td>Regime controls on precipitation process</td>
<td></td>
</tr>
<tr>
<td>DSD Gamma-Triplet correlations</td>
<td></td>
</tr>
<tr>
<td>CRM/LSM Satellite Simulator Physics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MC3E GV measurements</th>
<th>Applicable Measured and/or Diagnosed Parameters</th>
<th>Z</th>
<th>Z</th>
<th>P</th>
<th>D</th>
<th>Z</th>
<th>I</th>
<th>C</th>
<th>F</th>
<th>C</th>
<th>C</th>
<th>T</th>
<th>T</th>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruments</td>
<td>Measurable</td>
<td>Z</td>
<td>Z</td>
<td>P</td>
<td>D</td>
<td>Z</td>
<td>I</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ground Radar and Profiler</td>
<td></td>
</tr>
<tr>
<td>NREL, DOE S/CX</td>
<td></td>
</tr>
<tr>
<td>DSR Ka/Ku Dual-Pol</td>
<td></td>
</tr>
<tr>
<td>S/C/PR Profiling</td>
<td></td>
</tr>
<tr>
<td>MRR K-band Profiling</td>
<td></td>
</tr>
<tr>
<td>Ka-band Radar</td>
<td></td>
</tr>
<tr>
<td>Rain gauge array</td>
<td></td>
</tr>
<tr>
<td>Sounding array</td>
<td></td>
</tr>
<tr>
<td>ADMIRARI Radiometers</td>
<td></td>
</tr>
<tr>
<td>DOR-OK Surface Inst.</td>
<td></td>
</tr>
<tr>
<td>AEHI Radiometers</td>
<td></td>
</tr>
<tr>
<td>DOR Flex tower</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td></td>
</tr>
<tr>
<td>HWRAP (Ka/Ku, Raids)</td>
<td></td>
</tr>
<tr>
<td>CoSMIR (Radiometer)</td>
<td></td>
</tr>
<tr>
<td>AMPH (Radiometer)</td>
<td></td>
</tr>
<tr>
<td>2D-C/CD/CR: HDFS</td>
<td></td>
</tr>
<tr>
<td>CDP</td>
<td></td>
</tr>
<tr>
<td>Numeidos</td>
<td></td>
</tr>
<tr>
<td>King Probe</td>
<td></td>
</tr>
<tr>
<td>Remote sensing</td>
<td></td>
</tr>
<tr>
<td>CWA/HSAS</td>
<td></td>
</tr>
<tr>
<td>MAPF Radiometer</td>
<td></td>
</tr>
</tbody>
</table>

G. Skofronick Jackson, 2nd NOAA User Workshop on the GPM Mission, Nov 29, 2011, College Park, MD
Ground Validation

• LPVEx (Sept 15 – Dec 21, 2010):
 - Data review workshop in Helsinki, Oct 13-14, 2011.

• GCPEX (Jan 17 – Feb 28, 2012):
 - Ground instrumentation installation underway at and around the EC CARE sites.

• Partnership with NOAA National Mosaic QPE (NMQ) project:
 - GPM radiometer retrieval database development using 3D radar/rain data.
 - NMQ data also being used to characterize uncertainties in satellite precip. products.

• Future campaigns under consideration:
 - Large-scale Flood Testbed in Iowa: Target date - 2013.
 - Orographically-enhance Convection Testbed in the SE U.S.: Target date - 2014
 - Semi-Arid Monsoon Testbed in the SW U.S. (possibly jointly with SMAP)
 - Snow/Rain Testbed on Olympic Peninsula: OLYMPEX campaign (post-launch)
Objective

Characterize uncertainties in satellite products using radar and/or gauge data

\[\text{Var}(R_r - R) = \text{Var}(R_r - R_g) - \text{Var}(R_g - R) \]

Location: NASA/GSFC Wallops Flight Facility

25 km range rings

• Approach: Dense long-term gauge/disdrometer network under radar coverage

• **Stage 1:** Dense gauge network and multi-parameter/frequency radars
 • 25 gauge pairs, 5 x 5 km² area. Total inventory 70+ TB rain gauges
 • 4 existing locations with gauge pairs along the Eastern Shore (range studies)
 • NPOL (S-band), SPANDAR (S-band), WSR-88D (S-band), TOGA (C-band), D3R (Ka-Ku band) – quantify radar reference accuracy as f(scale, measurement type);

• **Stage 2:** 20+ disdrometers, 5 2DVDs, 20+ Parsivel, ~4 Joss; DSD variability studies +6 MRR’s

• **Addressing precipitation regime diversity via partnerships and collaboration:**
 • Coastal land/oceanic and seasonal regime gradients; long term observations between IOPs
 • Leverage partnering activities to expand regimes; e.g., Iowa Flood Center, HyMeX, S. Korea
GPM Near Real-time Data Products

- GMI L1 and L2 swath products within 20 min. of data collection
- Selected DPR L2 (e.g., reflectivity and precipitation rate) swath products within 120 min. of data collection
- Combined GMI and DPR L2 swath products within 120 min. of data collection
- L1C intercalibrated brightness temperature swath products and L2 GPROF precipitation products for partner radiometers within 10 min. of receiving L1B data from data providers
- L3 merged MW+IR, 0.1° x 0.1° gridded, half-hourly global precipitation products:
 - Low-latency, quick-look products (with relatively high IR data content) near data collection time
 - Late-look products with all available MW data within the collection window
Summary

GPM is an international satellite mission that will unify and advance precipitation measurements from a constellation of microwave sensors for research and application.

- **Advanced active/passive sensor capabilities**
 - Higher sensitivity to light rain and solid precipitation than TRMM instruments
 - Insights into precipitation physics with quantitative estimates of PSD parameters
- **Next-generation uniform global precipitation data products**
 - Inter-calibrated radiometric data from a constellation of MW sensors
 - Unified precipitation retrieval using a common hydrometeor database consistent with combined active/passive sensor measurements
- **Near real-time data for operational use and societal applications**
- **Ground validation is key to refining algorithm assumptions & parameters and characterization of uncertainties in precipitation estimates for improving GPM data products and data utilization:**
 - Conducting a series of focused GV field campaigns in collaboration with domestic and international partners to improve GPM satellite algorithms
 - Establishing GV research facilities to characterize uncertainties in satellite and ground-based precipitation estimates to improve understanding error propagation from inputs to forecasts of hydrological models.

URL: pmm.nasa.gov or gpm.nasa.gov