Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

Joel Susskind
NASA GSFC
Laboratory for Atmospheres
Sounder Research Team

NOAA Satellite Hyperspectral Spectrometer Workshop
March 29-31, 2011
Miami, Florida
AIRS

AIRS is a grating detector array spectrometer launched on Eos Aqua in May 2002. It provides information about surface and atmospheric temperature, water vapor and constituent profiles, and clouds.

Measures upwelling radiance \hat{R}_i in 2360 spectral channels i between 650 cm$^{-1}$ and 2665 cm$^{-1}$.

$$\frac{\nu_i}{\Delta \nu_i} \approx 1200 \quad \Delta \nu_i \text{ goes from } 0.5 \text{ cm}^{-1} - 2.2 \text{ cm}^{-1}$$

Spatial resolution ≈ 13 km at nadir from 705 km orbit.

Referred to as AIRS Field of View (FOV).

AIRS was accompanied by AMSU-A:

- Microwave temperature profile sounder
 - Spatial resolution ≈ 45 km at nadir
 - Referred to as AIRS Field of Regard (FOR)

 9 AIRS FOV’s fall within one FOR.

AIRS was designed specifically to have very low noise at short wavelengths. IASI, a high spectral resolution IR interferometer on METOP-A, has much higher noise at short wavelengths.
AIRS and IASI NEDT evaluated for a tropical atmosphere
Overview of AIRS Science Team Retrieval Methodology

Physically based retrieval system

Independent of GCM except for surface pressure - used to compute expected radiances

Uses cloud cleared radiances \hat{R}_i valid for AIR FOR to determine the solution

\hat{R}_i represents what AIRS would have seen in the absence of clouds

Derivation of \hat{R}_i is updated in different steps of the retrieval process

Basic steps

Initial cloud clearing produces \hat{R}_i^0 - based on statistical initial guess using observed radiances R_i

Sequentially determine surface parameters, $T(p)$, $q(p)$, $O_3(p)$, $CO(p)$, $CH_4(p)$, using \hat{R}_i^0

Each step uses its own set of channels

Generate error estimates $\delta T(p)$, $\delta q(p)$ and use for Quality Control (QC)

Retrieval system can be used with AIRS/AMSU radiances or in “AIRS Only” mode without AMSU radiances

Goddard DISC had been analyzing AIRS/AMSU data using AIRS Version-5 algorithm

Retrieveds are near real time

Analyzed data from September 2002 through the present

AIRS Science Team Version-6 algorithm will become operational in late 2011
Objectives of AIRS/AMSU

Provide real time observations to improve numerical weather prediction via data assimilation

Could be R_i (used by NCEP, ECMWF) or $T(p), q(p)$

Accuracy of $\hat{R}_i, T(p), q(p)$ degrades slowly with increasing cloud fraction

There is a trade-off between accuracy and spatial coverage

 - Assimilation of soundings or radiances only in clear cases limits utility of the data
 - Assimilation of poorer quality retrievals can degrade forecast skill

Provide observations to measure and explain interannual variability and trends

 - Must provide good spatial coverage but also be unbiased
 - Can be less accurate than needed for data assimilation

Use of AIRS product error estimates allows for QC optimized for each application

 - Tighter QC is better for data assimilation
 - Looser QC is better for climate applications
Significant Improvements in AIRS Retrieval Methodology

Improvements in AIRS Version-5

Improved radiative transfer parameterization accounts for effects of Non-Local Thermodynamic Equilibrium (non-LTE)

Allows for complete use of 4.3 μm CO₂ sounding channels to determine T(p)

Following theoretical considerations:

\[\hat{R}_i \] for 15 μm CO₂ channels are used only for cloud clearing coefficients

Gives clear column radiances \(\hat{R}_i \) for all channels

\(\hat{R}_i \) for 4.3 μm CO₂ channels are used to determine temperature profile T(p)

This allows for accurate T(p) soundings under more difficult cloud conditions

Further improvements in Version-6

Only shortwave window channels are now used to determine \(T_{\text{skin}} \), shortwave surface spectral emissivity \(\varepsilon_{\text{SW}}^{(v)} \), and bi-directional reflectance \(\rho_{\text{SW}}^{(v)} \)

\(\hat{R}_i \) in longwave window channels are used in a subsequent retrieval step to determine \(\varepsilon_{\text{LW}}^{(v)} \) given \(T_{\text{skin}} \)

This provides accurate surface soundings under more difficult cloud conditions

Version-6 also has other improvements compared to Version-5
Sample AIRS Cloud Free Brightness Temperature Version 6 Channels

Cloud Clearing *Temperature Profile* *Surface Skin and T(p)*
Water Vapor *Ozone* *CO*
CH₄ *LW Emissivity*
Methodology Used for \(T(p) \) Quality Control

Version-5

Define a profile dependent pressure, \(p_{\text{best}} \), above which the temperature profile is flagged as good - otherwise flagged as bad

Use error estimate \(\delta T(p) \) to determine \(p_{\text{best}} \)

Start from 70 mb and set \(p_{\text{best}} \) to be the pressure at the first level below which \(\delta T(p) > \) threshold \(\Delta T(p) \) for 3 consecutive layers

Temperature profile statistics include errors of \(T(p) \) down to \(p = p_{\text{best}} \)

Version-5 used \(\Delta T(p) \) thresholds optimized simultaneously for weather and climate: \(\Delta T^{\text{standard}}(p) \)

Subsequent experience showed \(\Delta T^{\text{standard}}(p) \) was not optimal for data assimilation (too loose) or for climate (too tight)

Use of new tighter thresholds \(\Delta T^{\text{tight}}(p) \) resulted in retrievals with lower yield but with RMS errors \(\approx 1 \text{K} \)

Performed much better when used in data assimilation experiments

Version-6

QC is analogous to Version-5 but has tight thresholds \(\Delta T_A(p) \) for data assimilation and loose thresholds \(\Delta T_C(p) \) for climate applications

\(\Delta T_A \) thresholds define \(p_{\text{best}} \) and \(\Delta T_C \) thresholds define \(p_{\text{good}} \)

\(\Delta T_A \) thresholds designed to give RMS errors \(\approx 1 \text{K} \)

\(\Delta T_C \) thresholds are used to generate level-3 gridded products
Forecast Impact Tests using Version-5 T(p)

Forecast impact tests were done at GSFC using GOES-5

Ran four sets of experiments, covering different seasons and years.
 October 15 – November 19, 2005
 August 10 – September 16, 2006
 April 15 – May 18, 2008

Four sets of assimilations were performed for each time period
 Control – uses no AIRS data but all other observations assimilated operationally
 Radiance – assimilates AIRS radiances as done operationally
 AIRS Standard assimilates AIRS T(p) down to \(p_{\text{best}} \) defined by standard thresholds
 AIRS Tight assimilates AIRS T(p) down to \(p_{\text{best}} \) defined by tight thresholds

7-day forecasts run from each 0 Z Analysis for each experiment

The accuracy is judged against anomaly correlation of 7-day forecasts vs.
 ECMWF Analysis for that time
An anomaly correlation of 1.0 represents a perfect forecast.
An anomaly correlation of 0.6 is the lower bound of a useful forecast.
AIRS Tight improves 7-day forecast skill by about 4 hours.
AIRS Science Team Version-6 algorithm determines tropospheric $T(p)$ and T_{skin} using only shortwave channels 2197 cm$^{-1}$ – 2664 cm$^{-1}$. The 15 μm tropospheric sounding CO$_2$ channels are used only for cloud clearing (as in Version-5)

Use of only shortwave channels to determine T_s and tropospheric $T(p)$ results in:
- “AIRS Only” retrievals that are comparable to AIRS/AMSU
 - Slightly lower yield with comparable accuracy
- Improved soundings of $T(p)$ and SST, day and night
 - Improvements are larger with increasing cloud cover
- Performance during day is actually superior to performance at night
 - Higher yields and lower errors, especially at larger cloud fraction

This new approach is practical with AIRS because
- Solar radiation reflected by the surface is solved for in the surface retrieval step
- Solar radiation reflected by clouds is accounted for in the cloud clearing step
- **AIRS channels have very low noise at short wavelengths**

This approach is not practical with IASI because shortwave NEDT is too large.

It is optimal for future (GEO) high-spectral resolution IR sounders to have low NEDT out to 2500 cm$^{-1}$. There is no need for a GEO MW sounder.