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RSS Trend: 

0.13oC/Decade

UMD Trend: 

0.22oC/Decade

T2 Trends Obtained from Three MSU CDR Datasets
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UAH Trend: 

0.04oC/Decade

Large differences of the T2 trend may be partially related to different ways of 

calculating biases from one instrument to the next and other calibration details in 

three different CDR datasets, which are obtained from the same SDR observations.



Cloud Impact on MSU/AMSU Derived Trends
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Weng, F. X. Zou and Z. Qin, 2013: Uncertainty of AMSU-A derived 

temperature trends in relationship with clouds and precipitation. 

Clim. Dyn., DOI 10.1007/ s00382-013-1958-7. 



1D-Var Derived Temperature Trend
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Weng, F. and X. Zou, 2013: 30-year atmospheric temperature trend derived 

by one-dimensional variational data assimilation of MSU/AMSU-A 

observations. Clim. Dyn., DOI: 10.1007/s00382-013-2012-5. 
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The Need for a Spatial Homogenization
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FOV Comparison between MSU and AMSU-A
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ATMS FOV

AMSU-A  FOV

FOV Comparison between ATMS and 

AMSU-A for Window Channels 1-2 

ATMS channels 1-2 beam width 5.2o

AMSU-A channels 1-2 beam width 3.3o
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ATMS FOV

AMSU-A FOV

FOV Size Comparison between  ATMS (channels 3-

16) and AMSU-A (channels 3-15)

ATMS beam width 2.2o, AMSU-A beam width 3.3o
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ATMS Remapping Algorithm
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Tb, k , l

ATMS remap  wi, j

i, jNch

Nch

 Tb, ki, l j

ATMS

 

Nch 
1       channels 1- 2 

2      channels 3-16





Stogryn, A., 1978: Estimates of brightness temperatures from

scanning radiometer data. IEEE Transaction on antennas

and Propagation,Vol. AP-26, No.5, 720-726.

 
wi, j  B-G coefficients



B-G Coefficients for ATMS Remap near Nadir
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An effective AMSU-A target FOV: output of BG remap (shaded in gray)

ATMS effective FOVs: Circles with colors indicating the magnitude of BG coefficients 



B-G Coefficients for ATMS Remap at All FOVs
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Tb at Channel 1 within Sandy before and after Remap
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(K)

Tb

remap

Tb

Tb  Tb

remap Tb

(contour interval: 1K)

NCEP GFS SLP
(contour interval: 10hPa)(before remap)

(after remap)

(0600 UTC October 28, 2012) 



LWP

(kg/m2)

Tb at Channel 1 within Sandy before and after Remap
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(K)

 Tb

remap and Tb

• The measured brightness temperatures at 23.8 GHz are higher over hurricane 

rainbands due to the contributions from cloud and water vapor emission 

(0600 UTC October 28, 2012) 

• The maximum brightness temperatures over cloud areas after remap are 

more than 2-3K lower than those before the remap

• The gradients of brightness temperatures near cloud edges become sharper 



IWP

(kg/m2)

Tb at Channel 16 within Sandy before and after Remap

15

(K)

 Tb
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• The measured brightness temperatures at 88.2 GHz are lower over areas with 

ice cloud within hurricane rainbands due to ice scattering effect on radiation 

(0600 UTC October 28, 2012) 

• The minimum brightness temperatures over ice cloud areas after remap are 

more than 2-3K lower than those before the remap



SNO Distribution 
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Time Period: January 1, 2012 - March 31, 2013 

Collocation Criteria: 15 km and 60 seconds 

Northern Hemisphere Southern Hemisphere



C. Zou et al., 2009: Error structure and atmospheric temperature trends in observations 

from the microwave sounding unit. J. Climate, 22, 1661-1681. 
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Global Trends of SNO-Calibrated MSU Channels 2-4
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Quality Control
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Outliers:

Tb = OATMS remap – ONOAA-18

Tb of ATMS channel 5 is 

outside the range [-2K, 1 K]. 


T

b
(K

)

OATMS remap (K)

ATMS Channel 5

SNO differences between remap 

ATMS and AMSU-A data: 
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Scatter Plots of Tb for ATMS Channels 6-8
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Scatter Plots of Tb(= OATMS remap – ONOAA-18) after Quality Control
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Biases of Tb= OATMS remap – ONOAA-18



Temporal Evolution of Channel 6 Observation
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before

after
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before

after

Nadir only, clear-sky, (2S-2N), (80W-180W) 

Data from NOAA-15, NOAA-18, MetOp-A, SNPP

Channel 6 Channel 7
Tb(K) Tb(K)

Tb(K) Tb(K)
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Biases in the Tropics (NOAA-15, NOAA-18, MetOp-A, SNPP)
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NOAA-18 is subtracted. The pentad data set within ±30o latitudinal band. 
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Biases in the Tropics (NOAA-15, MetOp-A, SNPP)

before after

ATMS channel 10
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NOAA-18 is subtracted. The pentad data set within ±30o latitudinal band. 



Summary & Conclusions

• ATMS data after remap compare much more favorably 

to NOAA-18 AMSU-A than before

• Channels 1 and 2 remap (i.e., a resolution enhancement) 

increases noise and bias increase; while remap of other 

channels (i.e., a downscaling) will reduce noise and bias

•After remap and SNO correction, data among NOAA-15, 

NOAA-18, MetOp-A and SNPP are more consistent within 

the same regions 
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after remap are more consistent with AMSU-A data from 

NOAA-15, NOAA-18, MetOp-A and  

 g The ATMS pentad dataset within  30o latitudinal band



Future Work

• Find the root causes of SNO and DD biases with 

respect to  

• Comparison between double difference (DD) method 

and SNO method
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 Differences of nonlinearity correction

 Full radiance versus brightness temperature

in radiometric calibration 

 Noise change related to instrument degradation

 Calibration target stability related to orbital drift 

 Uncertainty of TDR to SDR conversion 
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• Find the root causes of SNO and DD biases with 

respect to  

• Comparison between double difference (DD) method 

and SNO method
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 Differences of nonlinearity correction

 Full radiance versus brightness temperature

in radiometric calibration 

 Noise change related to instrument degradation

 Calibration target stability related to orbital drift 
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