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* Interestin Al and machine learning in the AMS Al Conference through Time
atmospheric sciences has exploded in the past ?
th ree yea rs # Presentations at AMS Al Conferences 198
* Much of the attention has been focused on the
algorthms . e e /oo
 However, choosing the right ML algorithm is | . = | IM I | il I
not sufficient for creating a successful Al/ML PPESSSIE IS SIS TIPS FE D F DS

system

» Successful deployment of Al/ML requires
making smart choices throughout the Machine
Learning Pipeline

« Goal: Discuss the components of the ML
pipeline and how to construct an effective
Al/ML system for atmospheric science
problems

Courtesy Philippe Tissot



The Data Science Taxonomy

Data Science

Field focused on methods for

extracting knowledge and insights
primarily from data

Artificial Intelligence
Methods for computer systems to
perform human tasks

Machine Learning
Mathematical models with specified structure learn to
perform tasks from data

Expert Systems
Operate autonomously with
human-specified rules. (e.g.

fuzzy logic)

Deep Learning
Neural networks with multiple
specialized layers for encoding
structural information
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Defining the Problem

1.
2.

The most important part of any machine learning project is
defining the problem properly

Questions to ask:
What are the ultimate goals of this project?
What are the specific inputs and outputs needed to achieve the goals?

What data are available for the inputs and outputs? What are the data
limitations?

What are the problem constraints (time, space, latency, physical)?

How is the problem currently solved, and what are the limitations of
those methods?



Machine Learning Problem Examples

What is the required level of detail?
Is hand-labeling needed?
What is the current way to define
and find objects?
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Object Segmentation (Kurth et al. 2018)

Layers for convolution and pooling Fully connected layers
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What is the quality of my output data?
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How do | quantify uncertainty?
What is the coverage of my dataset?
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Observation Diagnosis (Wimmers et al. 2019)
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How expensive is the original
parameterization?
Do | have all the necessary inputs and

outputs?
How will | put the emulator back in the
numerical model?
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Parameterization Emulation (Rasp et al. 2018)

ARI ini
Predictors =" - Traini ng

Forecast Grids

[ Random Forests ]

What is the quality of my ground truth?
Are all the relevant inputs archived?

Has the input numerical model changed
configuration significantly?
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Model Post-Processing
(Herman and Schumacher 2018)



Data Gathering

Benefits

Choose your data gathering adventure

Long archive

Freely available

Retrieve necessary subsets
Can compare different versions

File formats

Lack of metadata/ provenance
Inappropriate variables or pre-
processing for problem

Biased sampling

Gather exactly what you
need

Control experiment
design

Expensive

Quality of data gathering
No access to past

Your responsibility to
avoid bad data sampling
and processing practices

- Use Existing Data Gather Your Own Data Generate Synthetic Data

Control properties of data
Repeatable

May be computationally
expensive

Not from real world
Setting up infrastructure is
time-consuming



Data Preparation: Transformations

Reshaping and Sampling
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Pre-Processing: Training/Validation/Test Sets

Goal: produce a ML model that will generalize, or perform
well operationally.
How do we estimate generalization ability?
Training Set
* Used to optimize a model’s weights or structure for
one set of hyperparameters
*  More complex models will almost always improve on
training set scores
Validation Set
» Used to assess the performance of one or more
models
* Can be used to choose hyperparameters
» Should be independent of training data unless cross-
validation is used
Test Set
» Data unseen during training and validation
* Should be used for final assessment and not model
selection
How to split the data
» If data points are independent, random splits are fine
» Splitting process should account for spatial and
temporal dependencies

Underfitting Just right QOverfitting

« Training error slightly lower  « Very low training error
than test error « Training error much lower

« High training error

« Training error close to test
Symptoms

error than test error
« High variance

« High bias

Regression
illustration

Classification
illustration

Error Error Error

Deep learning
illustration

Epochs Epochs Epochs
« Complexify model

« Add more features
« Train longer

« Perform regularization
= Get more data

Possible
remedies


https://stanford.edu/%7Eshervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#diagnostics
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Models for Different Situations

Tabular Data

_ Small Num. Features | Large Num. Features
Small Num. Examples

Linear Regression

PCA+Linear 3] o
K-Nearest Neighbors Regression e %o
Decision Tree 01
=TI [T M SNl - Neural Network

Random Forest i
Linear Regression Gradient Boosting '
Random Forest

Spatio-Temporal Data

.5 1

_ Small Num. Features | Large Num. Features

CTOENI T W S'E T Gaussian Process PCA+Gaussian "L . . . .
0.0 0.2 0.4 0.6 0.8
Process
TR S ElylJ - Convolutional Neural

Input
Convolutional Neural
Network Network

1.0



Decision Trees

* Model that recursively partitions feature space e azso " || Downdraft Specd s
into smaller, more similar regions ’) S R
« Assign single prediction value to each subregion Duration Totl
* Decision Tree Training: — ~
* For each feature in data <= 2671967 e Y
« For each unique split value P Y
- Split the data into two subsets based | ™™""%e™"" | |15, [HEl | EEE
on candidate feature and value / N\ PN VAR
« Calculate error (&I |No Hait| [No Hail| [ail] (W&l  |No Hail

* Pick feature and threshold with largest ., Decision Tree
decrease in error
» Repeat for each branch until splitting is no
longer possible or no longer decreases error
* Pros: Interpretable, automatic feature selection
« Cons: brittle, prone to overfitting, low accuracy
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Random Forest

Ensemble of randomized Original
decision trees (Breiman 118ining Bete
2001)
* Two forms of randomness
— Bootstrap resample training Resamplod R RBeosf;tL?gd

data for each tree Training Data Training Data Training Data

— Select random subset of
input variables for
evaluation at each node
during training

* Special features

— High prediction accuracy

— Automatic feature selection

— Fast and parallelizable

— Requires little tuning Prediction

oy
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Aggregate




Neural Network Basics

Perceptron (artificial neuron)
o wp

Artificial Neural Network Structure

synapse
Wy

axon from a neuron

cell body
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input layer
hidden |ayer 1 hidden |ayer 2 ANN Activation Functions ANN Activation Gradients
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Training Procedure =
1. Send batch of training examples through network Pl — e o8
2. Calculate prediction error LT g
3. Calculate error gradients back through layers and update § — ;@ v
weights s s
4. Repeat over all training examples until errors are < AR g o
1 <<
satisfactory N aF \‘H
Definitions N I R R
Batch: subset of training examples used to update weights 20 s o %5 00 05 1o 15 20 o s 40 05 oo o5 10 15 0

Epoch: One pass through all examples in training set Input Input
Images from http://cs231n.github.io/convolutional-

networks/



Convolutional Neural Network

Deep neural network that encodes spatial information with iteratively optimized convolutional filters

Input: 32x32x1 Conv2D Mean Pool Conv2D
4 km Radar 8 5x5x1 [ OLT: 1 6x°12‘x8 16 5x5x8 |—=
Reflectivity RelLU : RelLU

Mean Pool
Out: 4x4x32

Mean Pool
Out: 8x8x16
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https://www.kdnuggets.com/2016/11/intuitive-
explanation-convolutional-neural-
networks.html



Convolutional Neural Network Model Zoo

VGG-16: A baseline CNN pattern

224x224x3 224 x224x 64

112 x 112 x 128

=) convolution+RelLU
max pooling
fully nected+RelLU
softmax

The VGG16 architecture of cycles
of convolution and pooling layers
is a good starting point for applying
CNNs to many weather problems.

Residual Blocks

X

Y

weight layer
56;56x25§8 I 7x7x512
x X
14&%  1x1x4096 1x1x1000 F(X) ¥ relu X
weight layer : i
g y identity

Residual blocks can replace
regular convolutional layers and
enable the training of extremely
deep neural networks

U-Net
2
|
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A Y — = conv 1x1
Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi- (h ann. cature map. The number of channels is denoted
on tof the box. The x-y-si s provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different opernuorm

U-Nets perform image-to-image
translation and can propagate
features across different scales.
Great for object segmentation
and downscaling.



Regularization
Max:p2e00 Max: 2.00 |
EBunt=49 Counl44ill
ok =Rl

i3

Dropout

Vo~

Max: 2.00 Max: 2.00

Spatial Dropout

LT [

Ridge and Lasso Weight Decay Dropout

* Ridge: penalize with L2 norm, reducing all « Randomly set input values to 0 with a fixed
weight magnitudes probability

+ Fits to noisy data more robustly « Can be applied to individual neurons or

« Lasso: penalize with L1 norm, setting whole spatial channels
smaller weights to 0 - [Effectively creates a bootstrapped

* Performs feature selection ensemble within one model
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Evaluation Loss Functions and Metrics

Loss Functions Cross-Entropy Mean Squared Error Continuous Ranked
(smoothly optimize Brier Score Mean Absolute Error Probability Score

the model)

Metrics POD, FAR, CSI, Correlation Coefficient KL-Divergence
(validate different etc. Mean Error Hellinger Distance
aspects of Heidke Skill Skill Score Rank Histograms
performance) Score 2D Histograms/Scatter Quantile-Quantile plot

ROC Curves plots
Brier Skill Score
Reliability

Diagrams



Verification Diagrams

Severe Hail Attributes Diagram
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Interpretable Machine Learning

* Machine learning models are
sometimes considered "black-
box” methods

* Prediction-generation is not
transparent for many methods

* Interpretation methods provide
additional information about why
a ML model generates certain
predictions

* Interpretation methods are a
lower-order model of the full ML
model

Gagne I, D.J., S.E. Haupt, D.W. Nychka, and G. Thompson, 2019:

Mon. Wea. Rev., 147, 2827-2845,

Z1
Z2

=

N
i)

Evaluation
Metric

i

N

Interpretation

i

Source: Z. Lipton, 2016: The Mythos of Model Interpretability.

McGovern, A., R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. EImore, C. R. Homeyer, and T. Smith, 2019: Making
the Black Box More Transparent: Understanding the Physical Implications of Machine Learning. Bull. Amer. Meteor. Soc.,

100, 2175-2199,


https://arxiv.org/pdf/1606.03490.pdf
https://journals-ametsoc-org.cuucar.idm.oclc.org/doi/abs/10.1175/MWR-D-18-0316.1
https://doi-org.cuucar.idm.oclc.org/10.1175/MWR-D-18-0316.1
https://doi.org/10.1175/BAMS-D-18-0195.1

Spectrum of Interpretation Techniques

Model-Agnostic Model-Specific
Global Permutation Variable Impurity Variable
Importance Importance
Partial Dependence Plots | Backwards Optimization
Local LIME Saliency Maps
Sufficient Input Subsets Grad-CAM




Permutation Variable Importance

Predictors Labels

« Model-agnostic method for ranking
input variables to model

* The set of values for each input
variable is permuted, and the
permuted data are sent through the
model

« The change in a verification metric
between the unpermuted and
permuted data is the importance

« Can be calculated for multiple

metrics
. . . Tlustration of single- utation 1 rtance.
¢ Computat|0na”y |ntenS|Ve but Eacsh ;red?c?orsigignﬁiizgiﬁ atatimrengbciue%oexes)

. and ranked by the difference in score from the original
pa ral Iel IZa b I e model and the model with permuted data (red shaded

values at end).

Examples




Variable Importance Example: Surface Layer

Unstable

wind speed 10 m

wind speed 20 m

v wind 20 m

v wind 10 m

u wind 10 m

mixing ratio skin change 10 m
u wind 20 m

bulk richardson 10 m

global horizontal irradiance 0 m
zenith 0 m

potential temperature skin change 10 m
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Friction velocity

global horizontal irradiance
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[SISISISISISISteIStSt ST
33333333333333

2
2
1
1
h
1
1
1

d2
uwind 1
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Moisture scale

wind speed 10 m

v wind 20 m

uwind 10 m

potential temperature skin change 10 m
uwind 20 m

wind speed 20 m

bulk richardson 10 m

v wind 10 m

mixing ratio skin change 10 m
zenith 0 m

global horizontal irradiance 0 m

wind speed 2

potential temperature skin change 2
potential temperature skin change 1
wind speed 1

wind 2

bulk r|chardson 1

mixing ratio skin change 1

v wind 2

uwind 1

v wind 1

mixing ratio skin change 2

global horizontal irradiance

zenith

0000000000000
3333333333333

potential temperature skin change
bulk richardson

potential temperature skin change
global horizontal irradianc

mixing ratio skin change

u wind

zenit

wind speed

mixing ratio skin changg
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moisture availability
v wind

. v wind

wind speed

C
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Stable

0.0

0.2 0.4 0.6
Friction velocity

0.0

Ojl Oj2
Temperature scale

0.0

0.1 0.2 0.3
Moisture scale

Calculate permutation variable
importance rankings with training data
from stable and unstable regimes from
Bulk Richardson.

Friction velocity

Near surface wind speed most
important

Stable 20 m wind speed less
important

Potential temperature gradient
more important at night

Temperature scale

Diurnal cycle variables more
important in unstable

Wind speed more important in
stable

Moisture scale

Mixing ratio gradient more
important in unstable regime
Temperature gradient more
important in stable regime



Partial Dependence Plots

1. Set all instances for one variable in 2. Feed fixed data 3. Calculate mean
a dataset to a single value through model prediction for fixed
Temperature | Dewpoint Pressure value
280 10 986 .
280 14 1014 Machine v
i ean
280 2 992 Learningor =
Physical Prediction
280 25 1025
Model
280 6 950

4. Repeat process for range of input values
potential temperature 10 m
0.2525 A

0.2500 ~

0.2475 A

260 280 300



Partial Dependence Examples

Hurricane Intensity Prediction

Precipitation Type Partial Dependence Plots radius max wind max wind min pressure wind shear
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Feature Visualization by Optimization

1. Start with all Os
storm patch

Desired

Label

2. Send input forward
through net to get error

3. Pass error back through
net to get change in input
4. Update input by
subtracting error derivative

Backpropagate error to update input image

Repeat steps 2-4 until prediction matches desired output
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Conv Net Optimal Hailstorms
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Supercell Filter

Bow Echo Filter

[

Example Conv. Filter Hail Discriminators
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Transitioning Machine Learning to Operations

« “Performance is not outcomes” (

)
— A high test set score does not guarantee improved outcomes in practice

— A new tool may worsen outcomes by negatively impacting other parts of the process
— E.g., increased use of automation degrades diagnostic skills (Snellman 1977)

* Operational machine learning satisfies different constraints than
research

— Low latency: machine learning systems should run as fast as possible, including
processing real-time data

— Reliable: should handle data delays and outages, not have too many data
dependencies

— Consistent: output should generally complement other sources of information and
provide justification for disagreements

— Actionable output: output should be easily interpreted by end users and assist in their
decision-making process


https://lukeoakdenrayner.wordpress.com/2019/01/21/medical-ai-safety-doing-it-wrong/

How can we maximize the potential of ML in Earth System Science?

IR I AN
A ‘Y\]‘dii}@ T hl
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Invest in people

Building ML systems is very labor
intensive

Need people with dual expertise
in Earth System Science and ML
Few ready but many in the
pipeline

Need more classes, tutorials

Invest in infrastructure

HPC workloads becoming more
bursty, read-heavy, interactive
Model codes need to be more
modular, accessible

Rethink how and how much
model output we store

Need more tools to debug
ML/identify feedbacks

AR

.\
e

Invest in patience

Quality research takes years
Essential infrastructure still being
built/envisioned

Conference and journal papers are
lagging indicators

ML won’t change everything
tomorrow, but could be an essential
in 5-10 years



* Machine learning practitioners should
rigorously decide how to implement each step
of the machine learning pipeline

* Building machine learning systems in the Model
context of the problem domain is critical for Interpretation

operational success Deployment
to Operations

Model Training Model Evaluation

Data Preparation Model Selection

Exploratory Data

Gather Data :
Analysis

Contact Information
Email: dgagne@ucar.edu
Define the Twitter: @DJGagneDos
Problem Github: djgagne
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