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Motivation

• Interest in AI and machine learning in the 
atmospheric sciences has exploded in the past 
three years

• Much of the attention has been focused on the 
algorithms

• However, choosing the right ML algorithm is 
not sufficient for creating a successful AI/ML 
system

• Successful deployment of AI/ML requires 
making smart choices throughout the Machine 
Learning Pipeline

• Goal: Discuss the components of the ML 
pipeline and how to construct an effective 
AI/ML system for atmospheric science 
problems

Courtesy Philippe Tissot



Data Science
Field focused on methods for 

extracting knowledge and insights 
primarily from data

The Data Science Taxonomy

Artificial Intelligence
Methods for computer systems to 

perform human tasks

Expert Systems
Operate autonomously with 
human-specified rules. (e.g. 

fuzzy logic)

Machine Learning
Mathematical models with specified structure learn to 

perform tasks from data

Deep Learning
Neural networks with multiple 

specialized layers for encoding 
structural information



The Machine Learning Pipeline

Gather Data

Define the 
Problem

Exploratory Data 
Analysis

Data Preparation Model Selection

Model Training Model Evaluation

Model 
Interpretation

Deployment 
to Operations



Defining the Problem

• The most important part of any machine learning project is 
defining the problem properly

• Questions to ask:
1. What are the ultimate goals of this project?
2. What are the specific inputs and outputs needed to achieve the goals?
3. What data are available for the inputs and outputs? What are the data 

limitations?
4. What are the problem constraints (time, space, latency, physical)?
5. How is the problem currently solved, and what are the limitations of 

those methods?



Machine Learning Problem Examples

Object Segmentation (Kurth et al. 2018) Parameterization Emulation (Rasp et al. 2018)

Observation Diagnosis (Wimmers et al. 2019) Model Post-Processing 
(Herman and Schumacher 2018)

What is the required level of detail?
Is hand-labeling needed?

What is the current way to define 
and find objects?

How expensive is the original 
parameterization?

Do I have all the necessary inputs and 
outputs?

How will I put the emulator back in the 
numerical model?

What is the quality of my output data?
How do I quantify uncertainty?

What is the coverage of my dataset?

What is the quality of my ground truth?
Are all the relevant inputs archived?

Has the input numerical model changed 
configuration significantly?



Data Gathering

Choose your data gathering adventure

Use Existing Data Gather Your Own Data Generate Synthetic Data

Benefits Long archive
Freely available
Retrieve necessary subsets
Can compare different versions

Gather exactly what you 
need
Control experiment 
design

Control properties of data
Repeatable

Perils File formats
Lack of metadata/ provenance
Inappropriate variables or pre-
processing for problem
Biased sampling

Expensive
Quality of data gathering
No access to past
Your responsibility to 
avoid bad data sampling 
and processing practices

May be computationally 
expensive
Not from real world
Setting up infrastructure is 
time-consuming



Data Preparation: Transformations

Time Lat Lon Temp Precip

0 35 -124 28 0

1 32 -94 15 24

2 45 -53 -2 5

… … … … …

Reshaping and Sampling

Data Scaling and 
Standardization

Dimensionality Reduction



Pre-Processing: Training/Validation/Test Sets

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#diagnostics

• Goal: produce a ML model that will generalize, or perform 
well operationally. 

• How do we estimate generalization ability?
• Training Set

• Used to optimize a model’s weights or structure for 
one set of hyperparameters

• More complex models will almost always improve on 
training set scores

• Validation Set
• Used to assess the performance of one or more 

models
• Can be used to choose hyperparameters
• Should be independent of training data unless cross-

validation is used
• Test Set

• Data unseen during training and validation
• Should be used for final assessment and not model 

selection
• How to split the data

• If data points are independent, random splits are fine
• Splitting process should account for spatial and 

temporal dependencies

https://stanford.edu/%7Eshervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#diagnostics
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Models for Different Situations

Small Num. Features Large Num. Features
Small Num. Examples Linear Regression

K-Nearest Neighbors
PCA+Linear
Regression
Decision Tree

Large Num. Examples Neural Network
Linear Regression
Random Forest

Random Forest
Gradient Boosting

Tabular Data

Spatio-Temporal Data

Small Num. Features Large Num. Features
Small Num. Examples Gaussian Process PCA+Gaussian

Process
Large Num. Examples Convolutional Neural 

Network
Convolutional Neural 
Network



Decision Trees

• Model that recursively partitions feature space 
into smaller, more similar regions

• Assign single prediction value to each subregion
• Decision Tree Training:

• For each feature in data
• For each unique split value

• Split the data into two subsets based 
on candidate feature and value

• Calculate error
• Pick feature and threshold with largest 

decrease in error
• Repeat for each branch until splitting is no 

longer possible or no longer decreases error
• Pros: Interpretable, automatic feature selection
• Cons: brittle, prone to overfitting, low accuracy

CAPE (J kg-1)



Random Forest

• Ensemble of randomized 
decision trees (Breiman
2001)

• Two forms of randomness
– Bootstrap resample training 

data for each tree
– Select random subset of 

input variables for 
evaluation at each node 
during training

• Special features
– High prediction accuracy
– Automatic feature selection
– Fast and parallelizable
– Requires little tuning Prediction

Aggregate

Bootstrap 
Resampled

Training Data

Bootstrap 
Resampled

Training Data

Bootstrap 
Resampled

Training Data

Original
Training Data



Neural Network Basics

Artificial Neural Network Structure Perceptron (artificial neuron)

Training Procedure
1. Send batch of training examples through network
2. Calculate prediction error
3. Calculate error gradients back through layers and update 

weights
4. Repeat over all training examples until errors are 

satisfactory

Definitions
Batch: subset of training examples used to update weights
Epoch: One pass through all examples in training set

Images from http://cs231n.github.io/convolutional-
networks/



Convolutional Neural Network

Deep neural network that encodes spatial information with iteratively optimized convolutional filters

Source: 
https://www.kdnuggets.com/2016/11/intuitive-
explanation-convolutional-neural-
networks.html



Convolutional Neural Network Model Zoo

VGG-16: A baseline CNN pattern Residual Blocks U-Net

The VGG16 architecture of cycles 
of convolution and pooling layers 
is a good starting point for applying 
CNNs to many weather problems.

Residual blocks can replace 
regular convolutional layers and 
enable the training of extremely 
deep neural networks

U-Nets perform image-to-image 
translation and can propagate 
features across different scales.
Great for object segmentation 
and downscaling.



Regularization

Dropout
• Randomly set input values to 0 with a fixed 

probability
• Can be applied to individual neurons or 

whole spatial channels
• Effectively creates a bootstrapped 

ensemble within one model

Ridge and Lasso Weight Decay
• Ridge: penalize with L2 norm, reducing all 

weight magnitudes
• Fits to noisy data more robustly
• Lasso: penalize with L1 norm, setting 

smaller weights to 0
• Performs feature selection
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Evaluation Loss Functions and Metrics

Classification Regression Distributions

Loss Functions
(smoothly optimize 
the model)

Cross-Entropy
Brier Score

Mean Squared Error
Mean Absolute Error

Continuous Ranked 
Probability Score

Metrics
(validate different 
aspects of 
performance)

POD, FAR, CSI, 
etc.
Heidke Skill 
Score
ROC Curves
Brier Skill Score
Reliability 
Diagrams

Correlation Coefficient
Mean Error
Skill Score
2D Histograms/Scatter 
plots

KL-Divergence
Hellinger Distance
Rank Histograms
Quantile-Quantile plot



Verification Diagrams



Interpretable Machine Learning

• Machine learning models are 
sometimes considered ”black-
box” methods 

• Prediction-generation is not 
transparent for many methods

• Interpretation methods provide 
additional information about why
a ML model generates certain 
predictions

• Interpretation methods are a 
lower-order model of the full ML 
model

Source: Z. Lipton, 2016: The Mythos of Model Interpretability. 
https://arxiv.org/pdf/1606.03490.pdf

Gagne II, D.J., S.E. Haupt, D.W. Nychka, and G. Thompson, 2019: Interpretable Deep Learning for Spatial Analysis of 
Severe Hailstorms. Mon. Wea. Rev., 147, 2827–2845, https://doi.org/10.1175/MWR-D-18-0316.1
McGovern, A., R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, 2019: Making 
the Black Box More Transparent: Understanding the Physical Implications of Machine Learning. Bull. Amer. Meteor. Soc., 
100, 2175–2199, https://doi.org/10.1175/BAMS-D-18-0195.1

https://arxiv.org/pdf/1606.03490.pdf
https://journals-ametsoc-org.cuucar.idm.oclc.org/doi/abs/10.1175/MWR-D-18-0316.1
https://doi-org.cuucar.idm.oclc.org/10.1175/MWR-D-18-0316.1
https://doi.org/10.1175/BAMS-D-18-0195.1


Spectrum of Interpretation Techniques

Model-Agnostic Model-Specific
Global Permutation Variable 

Importance
Partial Dependence Plots

Impurity Variable 
Importance
Backwards Optimization

Local LIME
Sufficient Input Subsets

Saliency Maps
Grad-CAM



Permutation Variable Importance

• Model-agnostic method for ranking 
input variables to model

• The set of values for each input 
variable is permuted, and the 
permuted data are sent through the 
model

• The change in a verification metric 
between the unpermuted and 
permuted data is the importance

• Can be calculated for multiple 
metrics

• Computationally intensive but 
parallelizable



Variable Importance Example: Surface Layer
Calculate permutation variable 
importance rankings with training data 
from stable and unstable regimes from 
Bulk Richardson.
Friction velocity
• Near surface wind speed most 

important
• Stable 20 m wind speed less 

important 
• Potential temperature gradient 

more important at night
Temperature scale
• Diurnal cycle variables more 

important in unstable
• Wind speed more important in 

stable
Moisture scale
• Mixing ratio gradient more 

important in unstable regime
• Temperature gradient more 

important in stable regime



Partial Dependence Plots

Temperature Dewpoint Pressure

280 10 986

280 14 1014

280 2 992

280 25 1025

280 6 950

1. Set all instances for one variable in 
a dataset to a single value

Machine 
Learning or 

Physical 
Model

2. Feed fixed data 
through model

Mean 
Prediction

3. Calculate mean 
prediction for fixed 

value

4. Repeat process for range of input values
Example: Temperature=[20, 22, ..., 40]

Machine Learning Microphysics



Partial Dependence Examples

Hurricane Intensity Prediction



Feature Visualization by Optimization

Conv Net with fixed 
weightsStorm 

Patch
Desired 
Label

Forward pass to infer probability

Backpropagate error to update input image

1. Start with all 0s 
storm patch

2. Send input forward 
through net to get error
3. Pass error back through 
net to get change in input
4. Update input by 
subtracting error derivative

Repeat steps 2-4 until prediction matches desired output



Conv Net Optimal Hailstorms



Storm Neurons
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Transitioning Machine Learning to Operations

• “Performance is not outcomes” (https://lukeoakdenrayner.wordpress.com/2019/01/21/medical-
ai-safety-doing-it-wrong/)
– A high test set score does not guarantee improved outcomes in practice
– A new tool may worsen outcomes by negatively impacting other parts of the process 
– E.g., increased use of automation degrades diagnostic skills (Snellman 1977)

• Operational machine learning satisfies different constraints than 
research 
– Low latency: machine learning systems should run as fast as possible, including 

processing real-time data
– Reliable: should handle data delays and outages, not have too many data 

dependencies
– Consistent: output should generally complement other sources of information and 

provide justification for disagreements
– Actionable output: output should be easily interpreted by end users and assist in their 

decision-making process 

https://lukeoakdenrayner.wordpress.com/2019/01/21/medical-ai-safety-doing-it-wrong/


How can we maximize the potential of ML in Earth System Science?

Invest in people
Building ML systems is very labor 
intensive
Need people with dual expertise 
in Earth System Science and ML
Few ready but many in the 
pipeline
Need more classes, tutorials

Invest in infrastructure
HPC workloads becoming more 
bursty, read-heavy, interactive
Model codes need to be more 
modular, accessible
Rethink how and how much 
model output we store
Need more tools to debug 
ML/identify feedbacks

Invest in patience
Quality research takes years 
Essential infrastructure still being 
built/envisioned
Conference and journal papers are 
lagging indicators
ML won’t change everything 
tomorrow, but could be an essential 
in 5-10 years 



Summary

Gather Data
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• Machine learning practitioners should 
rigorously decide how to implement each step 
of the machine learning pipeline

• Building machine learning systems in the 
context of the problem domain is critical for 
operational success 

Contact Information
Email: dgagne@ucar.edu
Twitter: @DJGagneDos
Github: djgagne
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