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From IPCC, Climate Change 2001

greenhouse gases  
sulphate aerosols

Evidence of climate change over the last century 



Power Spectra for NINO3 air 
temperature from the IPCC models

From AchutaRao & Sperber (2006)

The models are 
improving but 
most tend to  have 
a too regular and 
frequent El Nino 
cycle



BUT  to understand and model the changes  we need to know

• What are the important aspects of that climate change? 

• How do we “tune” our models?

• How sensitive these models are to the “tuning”?

• How do we characterize the errors in our models?

• What is the role of the ecosystem in modulating these  
changes?

• How much ecosystem complexity do we need to have?



Outline

• Modeling of changes in the North Pacific basin and 
associated challenges

• Discuss the ecosystem model and its parameter 
choice (application of variational adjoint method).

• Impact of the choice of the model parameters and 
the atmospheric forcing on the coupled 
circulation/ecosystem results. 

• Method under development used to estimate the error 
of representation of the circulation model.

• Climate change and its associated effect on the 
ecosystem.



Outline
• We have coupled an oligotrophic ecosystem model into a 

coarse resolution ocean general circulation model of the 
North Pacific Ocean

• In this talk I will first present results from the physical 
circulation model

• Then I will describe an attempt to assimilate satellite SST 
into the model using a reduced state space filter and the 
model error estimates generated from this attempt

• If time allows I will describe the oligiotrophic ecosystem 
model developed by Yvette Spitz

• Finally I will show results from a coupled model run and 
the impact of different forcing regimes 



North Pacific Circulation Model
• Model:  

Parallel Ocean Program 
(POP) model

• Domain:  
105° E to 85° W
30° S to 64° N

• Resolution:
1° at Equator on mercator

projection
0.5° average resolution
50 vertical levels with 25 in 

top 500 m
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Model Forcing
• 25 years (1978 thru 2002) of NCEP/NCAR 

Reanalysis Fields are used to force the 
model

• Wind Stress calculated from 10 m boundary 
layer winds using Smith et al

• Downwelling solar radiation flux reduced by a 
basin-wide cloud correction of 0.8765

• Longwave, Latent and Sensible Heat fluxes 
calculated from Model Sea Surface Temperature 
and 2 m boundary layer air temperature and 
humidity



North Pacific Upper Ocean Model

• Model initialized from 
Levitus WOA98 
temperature and 
salinity

• Model is restored to 
the initial surface 
salinity with 30 day 
restoration time

• Mixing is the upper 
ocean with the KPP 
mixed layer model of 
Large et al (1994)
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Results from 23 year Simulation
• The model is run for 23 

years with surface forcing 
from NCEP Reanalysis 
bulk fluxes

• The model will be 
compared to time series 
observations at 3 
locations
– HOT 22.4°N 158°W
– Equator 0°N 140°W
– Papa  50°N 145°W
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Model Results at
Hawaiian Ocean Time-Series 
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Sea Surface Temperature
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Depth of 20° C Isotherm
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Sea Surface Temperature
• At the equator, the sea surface temperature is 

dominated by interannual variability and El Nino 
rather than seasonal variability
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Subsurface Temperatures
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Model Mixed Layer at Papa

• The Sea Surface 
Temperature is 
dominated by the 
seasonal cycle with 
weak interannual
variability

• The winter mixed 
layer depth increases 
at 3.2 m/yr in the 
model
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EOF Analysis of Sea Surface 
Temperature Anomalies
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Variance described by SST EOFs
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EOF Analysis of Sea Surface 
Temperature Anomalies

• The first EOF which 
describes 7% of the total 
variance is dominated by 
equatorial variability of 
the El Nino cycles. In the 
equatorial region, this 
mode describes 60-80% 
of the SST variance.  The 
SST anomaly at 140W 
(blue) can be described 
by the first EOF (red) with 
the next two EOFs (black) 
making an insignificant 
contribution to the 
temperature.
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EOF Analysis of Sea Surface 
Temperature Anomalies

• The second EOF of the 
SST with 4% of the total 
variance described is 
dominated by variability in 
the strength of the 
subtropical gyre.  In the 
subtropical gyre, this 
mode describes 30-50% 
of the SST variance.  The 
SST anomaly at HOT 
(blue) is dominated by the 
second mode (red) with 
little contribution by the 
other two modes (black) 
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EOF Analysis of 150 m 
Temperature

• The first EOF of the 150 
m temperature is 
dominated by the 
equatorial variance in the 
western tropical Pacific.  
The amplitude of this 
mode is correlated with 
the first mode of the SST 
anomaly with correlation 
coefficient of 0.71
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Correlation between model forecast 
and the remotely sensed SST and Sea 

Level Observations



Model and Data Comparison for a non-El Nino 
year (Jan 1996) and an El Nino year (Jan 1998)

SST SSH
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Combining data and models 

If  wf is the forecast model state at time t (horizontal velocity, temperature,
salinity and free surface elevation)

If z is the vector of observations at time t,  the matrix H defines the mapping from
the state space to the observation space, so Hwf contains the predicted values of 
the observations.

The corrected state vector wa at time t is given by

wa = wf + PfHT (HPfHT + R)-1 (z - Hwf) 

where Pf is the error covariance matrix of forecast state vector wf and
R is the observation error covariance (includes that part of the signal that cannot be 
represented in terms of the model state), 

The matrix:
K = PfHT (HPfHT + R)-1

is known as the  Kalman gain matrix.  In a Kalman filter, Pf evolves by the model 
dynamics. In an optimal interpolation (OI) scheme, the matrix Pf is static, 
independent of time. 



Large number of state variables prohibits solving the full system 

Reduced State Space Kalman Filter

1) Compute the multivariate empirical orthogonal functionsmultivariate empirical orthogonal functions (EOF's) 
of our 23 year time series of deviations from the seasonal cycle,

2) A statistical test is performed in order to estimate the number of 
significant degrees of freedom.  (Preisendorfer (1988))  (35 modes 
accounting for  59% of the total variance)

3) Recast the Kalman filter problem in terms of a Reduced State Space 
of approximately 35 EOFs instead of 105 discrete points

4) We estimate the multivariate model error covariance Pf by 
performing linear regressions to fit the EOF's of the SST model 
data misfits with the temperature component of the model 
multivariate EOF's.  

5) Using the estimated model covariance, we calculate the Kalman gain 
and the update the model to combine with the observations.



Model Multivariate EOF 

• The first EOF of the 
surface velocity, 
temperature, salinity 
and sea level

• The first EOF is 
dominated by ENSO



Large number of state variables prohibits solving the full system 

Reduced State Space Kalman Filter

1) Compute the multivariate empirical orthogonal functionsmultivariate empirical orthogonal functions (EOF's) 
of our 23 year time series of deviations from the seasonal cycle,

2) A statistical test is performed in order to estimate the number of 
significant degrees of freedom.  (Preisendorfer (1988))  (35 modes 
accounting for  59% of the total variance)

3) Recast the Kalman filter problem in terms of a Reduced State Space 
of approximately 35 EOFs instead of 105 discrete points

4) We estimate the multivariate model error covariance Pf by 
performing linear regressions to fit the EOF's of the SST model 
data misfits with the temperature components of the model 
multivariate EOF's.  

5) Using the estimated model covariance, we calculate the Kalman gain 
and the update the model to combine with the observations.



Model and Data Correlations before and after 
Reduced State Space OI



Representation error

The Kalman filter blending of the model and the observations made a 
modest improvement of the model ouputs

Why was not there a bigger impact?

The model cannot represent all of the variability observed in the data.

Using the Reduced State Space, we can estimate this error of 
representation

The difference between the model data misfit and the EOF 
representation of this misfit (error of representation) gives us
information on where improvement is needed.



Model and AVHRR-Seasonal 
Anomaly of SST First EOF
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HOT

Pacific Decadal Oscillation
warm phase cool phase

Karl et al. (2001) 

Climate Change in the North 
Pacific Ecosystem
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A long-term record in the NPSG suggests 
a significant and persistent increase in 
chlorophyll concentrations in the late 
1970’s.

Karl et al. (200 1) 



Gyre-wide circulation patterns may also modulate 
the availability of specific nutrients in ways that are 
not yet well understood.

Pacific Decadal Oscillation  and Nutrient 
availability, e.g. phosphorus
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Interannual changes and trends at the Hawaii Ocean 
Time Series Station
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Prymnesiophytes

Chrysophytes

Diatoms

Phytoplankton taxa display distinct
long term patterns of variability



Can we model to the changes observed in the 
ecosystem in the late 90s?

AND 

What are the challenges to build such a model? 

• Circulation Model:
Ocean component of the Community Climate System Model   
(CCSM): Parallel Ocean Program (POP) model 

Domain: 105° E to 85° W  - 30° S to 64° N
Resolution: 1° at Equator on Mercator projection

0.5° average resolution
50 vertical levels with 25 in top 500 m

• Ecosystem Model:
From Fasham et al. (1990) to Spitz et al. (2001): nitrate, ammonium, 
phytoplankton, chl-a, two zooplankton, Bacteria, detritus (N and C), 
DOM (N and C)



Nitrogen based 
Ecosystem model
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Ecosystem model for HOT

DON/DOC Phytoplankton Nitrate

Ammonium

Bacteria Detritus

Mesozoo.

Chlorophyll-a

Nano/Microzoo.

N2 fixation



+   HOT observations (Karl et al., 1997)
Model estimates

•Using observed trichome abundances: 21.90±10.95 mmol N m-2 yr-1

•From the model results: 25.81± 15.32 mmol N m-2 yr-1

Dinitrogen fixation at HOT



Surface Chlorophyll-a
(mg Chl m-3)

Mean Difference between 
BATS and HOT simulation

(1992-2001)

The mean varies between 0.05 and 0.25 mg Chl m-3

HOT parameters : (97-01)-(92-96)

BATS parameters: (97-01)-(92-96)

Correlation between 
BATS and HOT parameters

(1992-2001)



HOT parameters
Correlation with SeaWiFS surface chlorophyll-a (98-01)

BATS parameters

Correlation between 
BATS and HOT parameters

Correlation between model simulations



Potential source of error - Atmospheric forcing 

• Wind stress and non solar radiation affect directly the 
circulation and indirectly the ecosystem 

• Solar radiation affects directly the ocean circulation and 
ecosystem (i.e. photosynthesis)



NCEP/NCAR : (97-01)-(92-96)

NCEP/DOE : (97-01)-(92-96)

Note change of scale

Mean Difference between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)

The mean varies between 100 and 220 W m-2

Correlation between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)

Downward Short Wave Radiation
(W m-2)



Downward Short Wave Radiation (W m-2)

Hale-Aloha Mooring Equator 0oN -140oW



Correlation between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)

Mean Difference between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)

NCEP/NCAR : (97-01)-(92-96)

NCEP/DOE : (97-01)-(92-96)

Wind Stress (dyne cm-2)



NCEP/NCAR : (97-01)-(92-96)

NCEP/DOE : (97-01)-(92-96)

Mean Difference between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)

Surface Temperature (oC)

Correlation between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)

The mean varies between 5 and 25 oC



Correlation between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)

NCEP/NCAR : (97-01)-(92-96)

NCEP/DOE : (97-01)-(92-96)

Sea Surface Height (m)

Mean Difference between 
NCEP/DOE and NCEP/NCAR

(1992-2001)

The mean varies between -0.8 and 0.5 m



NCEP/DOE : (97-01)-(92-96)

NCEP/NCAR : (97-01)-(92-96)

Mixed Layer Depth (m)

Mean Difference between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)

Correlation between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)



NCEP/NCAR : (97-01)-(92-96)

NCEP/DOE : (97-01)-(92-96)

Surface Chlorophyll-a
(mg Chl m-3)

Mean Difference between 
NCEP/DOE and NCEP/NCAR

(1992-2001)

Correlation between 
NCEP/DOE and NCEP/NCAR 

(1992-2001)

The mean varies between 0.05 and 0.25 mg Chl m-3
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NCEP/NCAR
HOT parameters

NCEP/DOE 
HOT parameters

Correlation with SeaWiFS surface chlorophyll-a (98-01)
NCEP/NCAR 

BATS parameters

Correlation between 
BATS and HOT parameters

Correlation between model chlorophyll-a simulations
Correlation between 

NCEP/DOE and NCEP/NCAR 



Conclusions

• Errors induced by unknown model parameters and 
errors in the atmospheric forcing are of the same 
magnitude (if not larger) than the variations due to 
climatic changes

• Larger impact of errors in the downward solar 
radiation on the modeled circulation as well as on the 
ecosystem than the wind stress. 



Conclusions and future work

• Ecosystem model parameter choice still remains an issue and can 
lead to errors of the same order of magnitude than the signal we are 
trying to reproduce and analyze

• Atmospheric forcing choice can impact the estimate of the interannual
to decadal variability. This impact is larger for the ecosystem than for 
the circulation.

• Data assimilation, such as Kalman filter (Reduced State Space) can 
help us to estimate the error of representation of the circulation model. 
This technique will be applied to estimate these errors in the ecosystem 
model and the coupled circulation/ecosystem model. 

• Observations on longer times and of new kinds will help improve 
model and reduce the errors. Climatic change assessment will also be 
improved.



Issues with ecosystem modeling -> data assimilation

• The number of ecosystem components needed to 
represent a given ecosystem is undetermined (NPZ, NPZD, 
NNPZD, …)

• The parameterization of the various links in the ecosystem 
is not well defined (e.g. grazing -> Ivlev versus Michaelis-
Menten)

• Most of the model parameters are little known and some of 
them not measurable (e.g. plankton mortality)


