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Motivation?Motivation?
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Changes in ClimateChanges in Climate
• Global mean surface temperature has risen by about 0.6°C 
over the 20th century, with the largest increase in the past two 
decades (IPCC, 2001).

• Global land surface precipitation has increased significantly 
(by about 2%) over the 20th century (IPCC, 2001).

/62

Global mean surface temperature anomaly relative to 1951-1990
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biogeophysical processes
(water, energy, heat, momentum, carbon exchanges)

biogeochemical processes 
(photosynthesis and respiration)

• Understanding land-climate interactions is crucial to 
evaluate the future state of climate.

Land and Climate InteractionsLand and Climate Interactions

• Land and climate are closely coupled. 

climate land

/62



5

OutlineOutline

• Response of vegetation to climate change

• Land surface feedbacks on climate

• Improving land-climate interaction modeling

• Future work

/62
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Topic I: Response of Vegetation to Topic I: Response of Vegetation to 
Climate ChangeClimate Change

/62

(Zhou et al., JGR, 2001; 2003a; Kaufmann, Zhou et al., 
IEEE, 2000; Bogaert, Zhou et al., JGR, 2002)

climate land

A hypothesis for warming-enhanced plan 
growth in the north since 1980s
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• Pronounced warming in
northern high latitudes

• Earlier disappearance of
snow in spring

• Increased precipitation in
northern high latitudes 

• Increased concentration
of atmospheric  CO2

Changes in Climate

• Increased productivity
through:

enhanced photosynthesis

enhanced nutrient 
availability

Changes in Vegetation

Have Climate Changes Promoted  Northern Have Climate Changes Promoted  Northern 
Vegetation Growth?Vegetation Growth?

?
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Satellite Remote Sensing of VegetationSatellite Remote Sensing of Vegetation

Greenness Index:

Normalized Difference Vegetation Index (NDVI)
NDVI=(NIR-RED)/(NIR+RED)

RED NIR

/62
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• GIMMS 15-day composite 8 km NDVI from 1981 to 1999 

• Observed monthly land surface climate data (1981-1999)

NOAA precipitation: 2.5°x2.5°
GISS temperature: 2°x2°

• A land cover map at 8 km resolution

DataData

/62
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• Vegetated pixels between April to October

minimize the non-vegetation solar zenith angle effects 
(e.g., satellite drift and changeover)
reduce the non-vegetation background contribution (e.g., 
snow and bare soils)

Map of vegetated pixels at 8 km resolution

Study RegionStudy Region
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• Changes in vegetation photosynthetic activity can be 
characterized by

changes in growing season duration
changes in NDVI magnitude  

Increases in NDVI magnitudeLonger growing season

Jan DecJul    Aug

earlier 
spring

delayed 
fall

NDVI
Jan DecJul    Aug

Increase

NDVI

Changes in Vegetation ActivityChanges in Vegetation Activity
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NORTH AMERICA (40N~70N)
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Spatial Patterns of GreeningSpatial Patterns of Greening
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• The greatest warming occurred during winter and spring.
• Eurasia has an overall warming while North America has

smaller warming or cooling trends. 

0
2
4
6
8

10
12
14
16
18

-0.35 -0.15 0.05 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.85

Temperature Trend

Pe
rc

en
ta

ge
 o

f A
re

a

North America
Eurasia

cooling warming

Continental Differences in WarmingContinental Differences in Warming

/62



16

EURASIA (40N~70N)
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Is there a statistically meaningful 
relation?

y x y =  
β0 +β1 x 

+ ε

y =
β0 +β1x+ β2 time 

+ ε

Δy =
β0+ β1Δ x

+ ε
EA NDVI EA T yes yes yes
NA NDVI NA T yes yes yes
EA NDVI NA T no no no
NA NDVI EA T no no no

Note: T – Temperature; EA – Eurasia; NA – North America

Statistical Results at Continental ScaleStatistical Results at Continental Scale
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NDVIsummer=β11Twinter+β12T2
winter+β21Tspring+β22T2

spring+β31Tsummer

+β32T2
summer +β41Pwinter+β42P2

winter+β51Pspring+β52P2
spring

+β61Psummer +β62P2
summer +β7SZAsummer+β8AODsummer

+αsummer + ε

Model NDVI at Regional ScaleModel NDVI at Regional Scale

• Panel data analysis: data aggregated into 2°x 2° boxes by 
seasons and vegetation types: 1430 boxes

• T and P represented by a quadratic  specification               
(a physiological optimum) with effects for earlier seasons.

• SZA and AOD used to separate non-vegetation effects.

• βs estimated using statistical techniques from econometrics.
/62
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Note: T - Temperature; P - Precipitation; AOD - Stratospheric 
aerosol optical depth; SZA - Solar zenith angle

Statistical Results at Regional ScaleStatistical Results at Regional Scale

/62

variables Is there a statistically 
meaningful relationship?

R2

T yes largest

P yes small

AOD yes small

SZA yes smallest
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ConclusionsConclusions

• Eurasia is photosynthetically more vigorous than North 
America during the past two decades:

Eurasia has a higher percentage of vegetated pixels 
(61% vs. 30%) showing a larger increase in the NDVI 
magnitude (12% vs. 8%) and a longer active growing 
season (18 vs. 12 days) than North America. 

• There is a statistically meaningful relationship between 
changes in satellite measured NDVI and those in observed 
surface air temperature at continental and regional scales.

• These results suggest a hypothesis for warming-enhanced 
plant growth in the north since 1980s.

/62
(Zhou et al., JGR, 2001; 2003a)
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Topic II: Land Surface Feedbacks Topic II: Land Surface Feedbacks 
on on ClimateClimate

/62(Zhou et al., PNAS, 2007; Zhou et al., JGR, 2007) 

climate land

A hypothesis for impacts of drought and vegetationimpacts of drought and vegetation
removal on climate over semiremoval on climate over semi--arid regionsarid regions
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Diurnal Cycle of Surface Air TemperatureDiurnal Cycle of Surface Air Temperature

/62

• Maximum/minimum temperature (Tmax/Tmin), diurnal 
temperature range (DTR), and mean temperature (Tmean)

0                   Local Time              24
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Tmax

DTR DTR=Tmax-Tmin
Tmean=(Tmax+Tmin)/2
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Global Warming vs DTR ReductionGlobal Warming vs DTR Reduction

• Tmin warms much faster than Tmax             Tmean   and DTR
• DTR trends are a signal connected to global warming

Trend and time series of annual Tmax,Tmin, and DTR for 1950-2004 
(Vose et al., 2005) /62

DTR=Tmax-Tmin
Tmean=(Tmax+Tmin)/2
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Observed DTR Trends: Global ViewObserved DTR Trends: Global View
• DTR declines most over semi-arid regions such as the Sahel 

and North China where pronounced drought has occurred.

/62(Data sources: Vose et al., 2005; Chen et al., 2001)
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Observed DTR Trends: Global StatisticsObserved DTR Trends: Global Statistics

• The drier the climate, the stronger the warming in Tmax and 
Tmin, and the larger the DTR reduction - the warming of Tmin
and the reduction of DTR are strongest over the driest regions.

/62

Wet

dry
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Observed DTR Trends: The SahelObserved DTR Trends: The Sahel

• Tmin has a strong/significant warming trend while Tmax shows a 
small/insignificant trend, and thus the DTR declines. 

Normalized time series anomalies of annual Tmax,Tmin, 
DTR, cloud cover, and rainfall for 1950-2004.
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Clouds/Rainfall Decreased the DTR?Clouds/Rainfall Decreased the DTR?
• Increased clouds, precipitation, and soil moisture have been 

used to explain the worldwide reduction of DTR

/62

clouds/soil moisture/precipitation          DTR

clouds/soil moisture/precipitation          DTR

cannot explain the DTR trends over the Sahel



28

New Hypothesis for Reducing the DTR?New Hypothesis for Reducing the DTR?

Drought and land use change -induced reduction
in vegetation cover and soil emissivity

Soil aridation and vegetation removal due to dand vegetation removal due to drought and 
land use change (e.g., deforestation, overgrazing, 
overfarming) increase albedo and decrease emissivity. 

Higher albedo reduces the absorption of solar radiation 
but such effect is compensated by more incoming 
radiation due to less cloud cover.

Lower emissivity reduces thermal emission and less 
vegetation increases soil heat storage, both warming the 
surface during nighttime over semiarid regions when and 
where evapotransporation is very limited. 

/62
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Climate Model Sensitivity TestsClimate Model Sensitivity Tests

• Three 20yrs simulations using NCAR CAM3/CLM3:
Control run (CTL): no changes in vegetation and εg =0.96 
Exp A: remove all vegetation and εg =0.89  
Exp B: remove all vegetation and εg =0.96  

Typical soil emissivity: 
εg = 0.96
Desert soil emissivity:
εg =0.89

Test region: Sahel

A-CTL: effects of vegetation + 
emissivity
B-CTL: effects of vegetation only

/62
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Observed vs Simulated Temp: Spatial PatternObserved vs Simulated Temp: Spatial Pattern

• Stronger warming for Tmin than Tmax over the Sahel

DTRTminTmax

OBS

A-CTL

B-CTL

Observed and simulated annual Tmax,Tmin, and DTR
/62



31

Observed vs Simulated Temp: Regional MeanObserved vs Simulated Temp: Regional Mean

• Reduced soil emissivity and vegetation both decrease DTR

Observed and simulated annual Tmax,Tmin, and DTR

vegetation + 
emissivity

vegetation 
only

Observed

/62
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Simulated Temp Diurnal and Seasonal CycleSimulated Temp Diurnal and Seasonal Cycle

• Largest warming during nighttime and dry seasons
• Smallest warming during daytime and wet seasons
• Larger warming in A-CTL than B-CTL

DJF JJA Annual

Differences in the diurnal cycle of temperature
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Explanations: Explanations: Radiation and Energy Budget?Radiation and Energy Budget?

• emissivity thermal emission   
• vegetation          soil heat storage  

sensible heat        Tmin

Differences in the diurnal cycle of radiation and energy budget
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Consistent with ObservationsConsistent with Observations
• The observed long-term decreasing DTR trend reversed after 

rainfall and vegetation recovered.
• Satellite observed a greening trend over the Sahel 
• Tmin negatively correlated with NDVI significantly 

/62
Time series of annual DTR, cloud cover, 
rainfall, and NDVI for 1976-2004



35

ConclusionsConclusions

• Climate model simulations show that the reduction in 
vegetation and soil emissivity warms Tmin much faster 
than Tmax and thus substantially declines the DTR. 

• These results suggest a new hypothesis that drought and 
human induced vegetation removal and soil aridation may 
have enhanced the warming of Tmin and thus the 
decreasing of DTR over semiarid regions. 

• This new hypothesis is consistent with observations. 

(Zhou et al., PNAS, 2007; Zhou et al., JGR, 2007 ) 
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Topic III: Improving Topic III: Improving 
LandLand--Climate Interaction Modeling Climate Interaction Modeling 

/62(Zhou et al., GRL, 2003; 2005; Zhou et al., JGR, 2003b; 2003c)

climate land

Applications of remote sensing data to improve 
land surface processes modeling
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LandLand--Climate InteractionsClimate Interactions
in Climate Modelsin Climate Models

temperature, precipitation, downward solar radiation, 
downward longwave radiation, etcatmosphere

land
land cover/use

change 

Land Surface Parameterizations:
albedo, emissivity, roughness, evapotranspiration, etc

sensible heat latent heat upward longwave radiationreflected solar radiation

Land Surface Parameters:
vegetation type/fraction/amount, 

soil properties, etc

input

/62
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Using RS Data to Improve Climate ModelsUsing RS Data to Improve Climate Models

/62

LAI
new land 
surface 
datasets

better 
radiation 
schemes

RS Land Products

%vegetation cover

land cover type

albedo

emissivity

Modeled Climate

temperature

evapotranspiration

precipitation

Better LSPs
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Albedo differences (CLM-MODIS)

Identifying Model Albedo BiasesIdentifying Model Albedo Biases

• Largest model albedo biases occur over snow-covered
vegetated surfaces and over arid/semiarid regions.

• Model albedoes are consistent with the MODIS data for  
dense forests over snow-free regions.  

/62(Zhou et al., JGR, 2003b)
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ASTER/MODIS emissivity

Soil emissivity = 0.96

CLM2 emissivity

• NCAR models use a constant soil emissivity while satellite 
data show considerable spatial variability over North Africa.

• Biggest emissivity biases occur over arid/semiarid regions.

Identifying Model Emissivity BiasesIdentifying Model Emissivity Biases

/62(Zhou et al., JGR, 2003c)
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Essential Problem?Essential Problem?

Problem: accuracy for horizontally 
homogeneous canopies but largest 
errors for semiarid and snow-covered 
vegetated surfaces

Solution: a more realistic 3D radiation 
model plus a more accurate boundary 
condition 

climate model view of vegetation

what it looks like for semi-arid system

• Climate models generally use two-stream radiation schemes to 
calculate albedos/emissivities for vegetated surfaces.

soil albedo/emissivity

shading effects

/62
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Case Study #1: Case Study #1: 

Develop more accurate soil albedosDevelop more accurate soil albedos

/62



43

• Current climate models represent soil albedos by a limited 
number of prescribed values. Soil albedos

vary only by several soil colors globally 
have a near-infrared to visible albedo ratio of 2
are independent of solar zenith angle

• Such simple representation produces notable albedo biases 
over arid and semi-arid regions

Why Necessary?Why Necessary?

To develop a more accurate soil albedo dataset 
from MODIS for use in climate models

/62

Case Study #1
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• MODIS has 7 spectral bands. Each band uses 3
parameters to represent direct and diffuse albedos:

/62

MODIS Albedos with 21 ParametersMODIS Albedos with 21 Parameters

• Spectral-to-broadband conversions used to produce 
albedos for 3 broadbands: visible (0.4~0.7 µm), near-
infrared (0.7~5.0 µm), and shortwave (0.4~5.0 µm) 

In total, 21 parameters: 
7 spectral bands x 3 parameters (ƒiso, ƒvol, ƒgeo )

Case Study #1



45

• MODIS albedo parameters for 7 spectral bands averaged from 
high quality pixels in dust-free seasons from 2000 to 2005

21 parameters
1 km resolution 
vegetated pixels excluded

Example: True-color RGB image for parameter ƒiso

Data and Study RegionData and Study Region

/62

an image with 21 bands 
over 14 million pixels

Case Study #1
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• Further statistical analyses are more useful for MODIS data  

to reduce the data redundancy
to segregate the data noise
to separate albedos into spatial patterns of large-scale, 
local-scale and noise

Need a Simple Statistical ModelNeed a Simple Statistical Model

/62

Case Study #1
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MNF transformation

MethodsMethods
• Minimum noise fraction (MNF) transformations 

MODIS data 21 parameters

MNF band 1 MNF band 2 MNF band 21 MNF 3, …

first few MNF bands

MNF inversion

high quality albedo
coarser resolution

albedo datasets
aggregation

largest variance and 
highest spatial coherence

/62

Case Study #1
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MODIS vs MNFMODIS vs MNF--based Albedos: based Albedos: 
Spatial PatternSpatial Pattern

Shortwave diffuse albedos at 10 km resolution
/62

• More local-scale variations described with more MNF bands

Case Study #1
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MODIS vs MNFMODIS vs MNF--based Albedos: based Albedos: 
Scatter PlotsScatter Plots

Shortwave diffuse albedos at 10 km resolution
/62

• The first 7 MNF explains 99.9% of the total variance in 
MODIS data at 10 km resolution

Total grids:
151,520

Case Study #1
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• First few MNF bands are sufficient to create a more
accurate soil albedo dataset with high quality for use in 
climate models through MNF transformations of MODIS 
data. 

• The statistical method is able to capture most of the 
MODIS albedo variance and extract large-scale albedo 
patterns from the original MODIS data while improving
the data quality and reducing the number of parameters
needed to represent the data.

ConclusionsConclusions

/62
(Zhou et al., GRL, 2005)

Case Study #1
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Case Study #2:Case Study #2:

Characterize soil Characterize soil albedoalbedo--moisture moisture 
relationshiprelationship

/62
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• Soil albedo varies with soil moisture  used in NCAR climate 
models

Why Necessary?Why Necessary?

where α is soil albedo and θ is the ratio of surface soil water 
volumetric content over its saturated value

• Dickinson used this formulation in his BATS model and it has 
been widely used thereafter

• This formulation was based on limited observations from few 
points and thus needs further improvement using large-scale 
satellite measurements

/62

Case Study #2
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• Surface daily soil moisture retrieved from TRMM/TMI at 
1/8° over southern US (2000-2002) (Gao et al., 2006)

unaffected by clouds and atmospheric water vapor
best quality over sparsely vegetated regions
active precipitation, snow and frozen soils excluded

• MODIS diffuse albedos over southern US (2000-2002)

DataData

/62

Case Study #2
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Data ProcessingData Processing
• Soil moisture was temporally aggregated into 16-day averages 

and MODIS albedos were spatially aggregated into 1/8° from 
high quality pixels.

• Focusing on a region in southwestern USA where barren 
fraction > 50% to ensure the best quality in soil data and to 
minimize the contribution from vegetation to soil albedos.

Study 
Region

Barren fraction at 1/8° /62

Case Study #2

Soil types:
dark

medium
bright
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ResultsResults

slope = -0.4
for both VIS and NIR

in NCAR models:

/62

Case Study #2

• Observed slopes differ largely between VIS and NIR, and 
among soil types while NCAR models use a constant slope  
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• Soil albedo decreases linearly with soil moisture and 
such decrease depends on soil color and spectral bands.

• On average, an increase of soil moisture by 10% will 
decrease soil albedo by 3~6% for the visible band and 
6~12% for the NIR band, while 4% is used for both 
visible and NIR bands in NCAR models. 

ConclusionsConclusions

/62

Case Study #2
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Case Study #3:Case Study #3:

Develop thermal infrared Develop thermal infrared emissivityemissivity
schemesschemes

/62
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MODIS albedoASTER emissivity

R=-0.76

MODIS bands 1 2 3 4 5 6 7
Correlation (R) -.76 -.74 -.16 -.52 -.77 -.77 -.85

/62

Negative Negative EmissivityEmissivity--AlbedoAlbedo CorrelationCorrelation
Case Study #3

• A significant negative linear albedo-emissivity relationship

(Zhou et al., GRL, 2003)



59 /62(Ogawa et al., EI, 2004)

New Emissivity Schemes:New Emissivity Schemes:
Combining Albedo to Derive EmissivityCombining Albedo to Derive Emissivity

ASTER/MODIS emissivity

Case Study #3

• Complementing ASTER data with MODIS to derive thermal 
infrared emissivity products by USDA/ARS
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New Emissivity Schemes:New Emissivity Schemes:
Relating Relating Emissivity to Albedo in GCMEmissivity to Albedo in GCM

/62

Improved temperature simulation over Sahara
(Zhou et al., JGR, 2003c)

Case Study #3

• Better temperature simulations due to improved soil emissivity
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ConclusionsConclusions

• NCAR models have the biggest emissivity bias over arid 
and semiarid regions.

• There is a strong negative correlation between soil albedo
and emissivity over arid and semiarid regions.

• This relationship can help develop new schemes to derive 
thermal infrared emissivity products and to better 
characterize land surface emissivity in climate models.

/62
(Zhou et al., GRL, 2003; Zhou et al., JGR, 2003c)

Case Study #3
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Future WorkFuture Work

To develop and apply remote sensing data for land 
surface modeling in NWP and environmental monitoring

/62

• Improve and develop remote sensing algorithms/products 
for environmental monitoring and climate modeling.

• Identify major model deficiencies in land surface 
processes (e.g., LAI, FVC, albedo, emissivity) using 
remote sensing and observational data.

• Design sensitivity experiments to test and attribute these 
deficiencies.

• Develop, test, and improve model parameters/schemes by 
examining hydroclimate variables (e.g., T, P, soil 
moisture, ET, runoff) with observations. 
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